Commit Graph

5 Commits

Author SHA1 Message Date
Alexander Borzunov
8c546d988a
Test Llama, rebalancing, throughput eval, and all CLI scripts (#452)
This PR extends CI to:

1. Test Llama code using [TinyLlama-v0](https://huggingface.co/Maykeye/TinyLLama-v0).
2. Test rebalancing (sets up a situation where the 1st server needs to change its original position).
3. Check if benchmark scripts run (in case someone breaks its code). Note that the benchmark results are meaningless here (since they're measured on a tiny swarm of CPU servers, with low `--n_steps`).
4. Test `petals.cli.run_dht`.
5. Increase swap space and watch free RAM (a common issue is that actions are cancelled without explanation if there's not enough RAM - so it's a useful reminder + debug tool).
6. Fix flapping tests for bloom-560m by increasing tolerance.

Other minor changes: fix `--help` messages to show defaults, fix docs, tune rebalancing constants.
2023-08-08 19:10:27 +04:00
Alexander Borzunov
cb3f018f9f
Add LLaMA support (#323)
This PR:

1. **Abolishes the model conversion procedure.** Now, models are downloaded directly from original repositories like https://huggingface.co/bigscience/bloom. Servers download only shards with blocks to be hosted, and clients download only shards with input/output embeddings and layernorms.

    - BLOOM is loaded from `bigscience/bloom`, but we use the DHT prefix `bigscience/bloom-petals` for backward compatibility. Same with smaller BLOOMs and BLOOMZ.
    - LLaMA can be loaded from any repo like `username/llama-65b-hf`, but we use the DHT prefix `llama-65b-hf` (without the username) to accomodate blocks from different repos (there're a few of them with minor differences, such as `Llama` vs. `LLaMA` in the class name).

2. **Refactors the client to generalize it for multiple models.** Now, we have `petals.models` packages that contain model-specific code (e.g. `petals.models.bloom`, `petals.models.llama`). General code (e.g. CPU-efficient LM head, p-tuning) is kept in `petals.client`.

3. **Introduces** `WrappedLlamaBlock`, `DistributedLlamaConfig`, `DistributedLlamaForCausalLM`, `DistributedLlamaForSequenceClassification`, and `DistributedLlamaModel` compatible with Petals functionality (p-tuning, adapters, etc.).

4. **Introduces** `AutoDistributedConfig` that automatically chooses the correct config class (`DistributedLlamaConfig` or `DistributedBloomConfig`). The refactored configs contain all model-specific info for both clients and servers.

Upgrade instructions:

- Remove disk caches for blocks in old (converted) format to save disk space. That is, remove `~/.cache/petals/model--bigscience--bloom-petals` and  `~/.cache/petals/model--bigscience--bloomz-petals` directories (if present).
2023-06-23 15:46:10 +04:00
Max Ryabinin
793726b041
Speed up loading blocks using init with meta weights (#285)
* Init WrappedBloomBlock with meta weights

---------

Co-authored-by: Alexander Borzunov <borzunov.alexander@gmail.com>
2023-03-13 00:49:04 +03:00
justheuristic
c2cb6d19ae
Increase tolerances in test_tp_block (#196)
deflapify tests
2023-01-11 17:54:24 +03:00
justheuristic
ae9e71fe8e
Add local tensor-parallel fwd/bwd (#143)
This pull request adds an option to run Petals server on multiple local GPUs. It uses https://github.com/BlackSamorez/tensor_parallel

- 8bit approximation error same as in main (mean~=2% q0.9~=5%)
    - TP=1, 2, 3 (see screenshots above)
- forward, grad w.r.t. input and inference exact match with main with TP=1
- `>=`80% GPU utilization with 3x 1080ti, batch = 8 tokens
- throughput measured with and without TP
- TP on 1080Tis has near-linear speedup comparable to the benchmarks (see first message)


Co-authored-by: Iaroslav Lisniak <yalisnyak@nes.ru>
Co-authored-by: Andrei Panferov <andrei@blacksamorez.ru>
Co-authored-by: Alexander Borzunov <borzunov.alexander@gmail.com>
2023-01-03 18:35:51 +03:00