inference session

This commit is contained in:
justheuristic 2022-06-29 15:30:36 +03:00
parent a7be94e6e7
commit e7f716502c

View File

@ -1,14 +1,16 @@
from __future__ import annotations
import contextlib
import logging
import random
import torch
from hivemind import DHT, get_logger, use_hivemind_log_handler
from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
from hivemind.moe.expert_uid import ExpertInfo
from torch import nn
from src import DistributedBloomConfig
from src import DistributedBloomConfig, RemoteTransformerBlock
from src.client.remote_sequence_info import RemoteSequenceInfo
from src.data_structures import UID_DELIMITER
from src.dht_utils import _create_remote_modules_from_infos
@ -78,74 +80,52 @@ class RemoteSequential(nn.Sequential):
class RemoteSequentialInferenceSession:
"""An interface to a multi-step *inference* session for a sequence of remote transformer blocks"""
def __init__(self, remote_sequence_info: RemoteSequenceInfo):
def __init__(self, remote_sequence_info: RemoteSequenceInfo, p2p: P2P):
self.remote_sequence_info = remote_sequence_info
self.p2p = p2p
self.closed = False
self.stack = contextlib.ExitStack()
self.active_sessions = []
def __enter__(self):
assert not self.closed
self.stack.__enter__()
# TODO(yozh) replace this code with a fault-tolerant chain that can be reconstructed if some peers fail
current_final_block = 0
self.active_chain = []
while current_final_block != len(remote_sequence_info):
candidate_spans = remote_sequence_info.spans_containing_block[current_final_block]
current_block = 0
while current_block != len(self.remote_sequence_info):
candidate_spans = self.remote_sequence_info.spans_containing_block[current_block]
chosen_span = random.choice(candidate_spans) # TODO this is a temporary code
assert chosen_span.start <= current_final_block < chosen_span.end
assert chosen_span.start <= current_block < chosen_span.end
self.active_chain.append((current_final_block, chosen_span.end, chosen_span))
current_final_block = chosen_span.end
# TODO begin throwaway prototype code
remote = RemoteTransformerBlock(self.remote_sequence_info.block_infos[current_block], self.p2p)
remote.info
span_uids = self.remote_sequence_info.block_uids[current_block: chosen_span.end]
remote._info = ExpertInfo(" ".join(span_uids), chosen_span.peer_id)
self.active_sessions.append(remote.inference_session())
print('BEGIN', current_block, remote, self.active_sessions[-1])
self.stack.enter_context(self.active_sessions[-1])
current_block = chosen_span.end
# TODO end throwaway prototype code
return self
# def step(self, new_hidden_states: torch.Tensor):
# """Inference step: send a chunk of input tensors and receive a chunk of outputs"""
# if self.closed:
# raise Exception("Session is closed, cannot perform step")
# # serialize inputs and put them into the queue
# inputs = (new_hidden_states,)
# outputs_serialized = RemoteExpertWorker.run_coroutine(
# self._step(
# runtime_pb2.ExpertRequest(
# uid=self.uid,
# tensors=[
# serialize_torch_tensor(tensor, proto.compression)
# for tensor, proto in zip(inputs, nested_flatten(self.info["forward_schema"]))
# ],
# )
# )
# )
# outputs = list(map(deserialize_torch_tensor, outputs_serialized.tensors))
# assert outputs[0].shape == inputs[0].shape, f"expected outputs[0] to be hidden states but got {outputs[0]}"
# return outputs[0]
#
# async def _step(self, inputs_serialized: runtime_pb2.ExpertRequest) -> runtime_pb2.ExpertResponse:
# """Inference step on serialized data. This code is meant to be run inside RemoteExpertWorker"""
# await self._inputs_queue.put(inputs_serialized)
# return await anext(self._outputs_stream)
#
# def close(self):
# """Finish a given inference session, close the underlying connection"""
# if self._outputs_stream is None:
# return # already closed
# RemoteExpertWorker.run_coroutine(self._aclose_stream())
# self._outputs_stream = self._inputs_queue = None
# self.closed = True
#
# async def _aclose_stream(self):
# """Close the inference session. This code is meant to be run inside RemoteExpertWorker"""
# if self._outputs_stream is None:
# return # already closed
# await self._inputs_queue.put(runtime_pb2.ExpertRequest()) # empty request will trigger end of session
# try:
# await anext(self._outputs_stream)
# except StopAsyncIteration:
# pass
#
# def __del__(self):
# self.close()
#
# def __enter__(self):
# assert not self.closed
# return self
#
# def __exit__(self, *exc_details):
# self.close()
def step(self, inputs: torch.Tensor):
assert not self.closed
for session in self.active_sessions:
outputs = session.step(inputs)
assert outputs.shape == inputs.shape, f"expected {inputs.shape}, got {outputs.shape}"
inputs = outputs
def close(self, *exc_details):
"""Finish a given inference session, close the underlying connection"""
assert not self.closed
self.active_sessions.clear()
self.closed = True
def __exit__(self, *exc_details):
self.close()
def __del__(self):
self.close()