mirror of
https://github.com/bigscience-workshop/petals
synced 2024-11-16 06:12:50 +00:00
refactor, add swarm info
This commit is contained in:
parent
331591c915
commit
b78d713347
@ -65,7 +65,7 @@ loss = (outputs * torch.randn_like(outputs)).norm()
|
||||
loss.backward()
|
||||
|
||||
# test inference, one block
|
||||
with layer3.begin_inference_session() as sess:
|
||||
with layer3.inference_session() as sess:
|
||||
for i in range(10):
|
||||
res = sess.step(torch.ones(1, 1, 4096))
|
||||
```
|
||||
|
@ -11,13 +11,17 @@ from hivemind.moe.client.expert import RemoteExpert, RemoteExpertWorker
|
||||
from hivemind.moe.expert_uid import ExpertInfo
|
||||
from hivemind.p2p import P2P, StubBase
|
||||
from hivemind.proto import runtime_pb2
|
||||
from hivemind.utils import anext, nested_flatten
|
||||
from hivemind.utils import anext, nested_flatten, use_hivemind_log_handler, get_logger
|
||||
|
||||
from src.data_structures import RemoteModuleInfo
|
||||
from src.dht_utils import ModuleUID
|
||||
from src.server.handler import TransformerConnectionHandler
|
||||
|
||||
|
||||
use_hivemind_log_handler("in_root_logger")
|
||||
logger = get_logger(__file__)
|
||||
|
||||
|
||||
class RemoteTransformerBlock(RemoteExpert):
|
||||
"""A class that interacts with a remote module on a specific server for forward/backward or inference"""
|
||||
|
||||
@ -34,11 +38,15 @@ class RemoteTransformerBlock(RemoteExpert):
|
||||
assert v is None, f"Extra keyword arguments are not yet supported (got {k} = {v})"
|
||||
return super().forward(inputs)
|
||||
|
||||
def begin_inference_session(self) -> RemoteTransformerBlockInferenceSession:
|
||||
def inference_session(self) -> RemoteTransformerBlockInferenceSession:
|
||||
"""Initialize a new inference session with the specified remote server"""
|
||||
_ = self.info # create _info manually since the built-in property will not work inside RemoteExpertWorker
|
||||
return RemoteExpertWorker.run_coroutine(RemoteTransformerBlockInferenceSession._create(self))
|
||||
|
||||
def begin_inference_session(self):
|
||||
logger.warning("beging_inference_session was renamed to just inference_session")
|
||||
return self.inference_session()
|
||||
|
||||
|
||||
class RemoteTransformerBlockInferenceSession:
|
||||
"""An interface to a single multi-step *inference* session for a specific remote module with a specific server"""
|
||||
|
@ -1,14 +1,19 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import dataclasses
|
||||
import logging
|
||||
import threading
|
||||
from functools import partial
|
||||
from typing import Optional, Tuple
|
||||
from typing import Optional, Tuple, NamedTuple, List, Sequence
|
||||
|
||||
import torch
|
||||
from hivemind import DHT, get_logger, use_hivemind_log_handler
|
||||
from hivemind import DHT, get_logger, use_hivemind_log_handler, PeerID
|
||||
from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
|
||||
from hivemind.proto import runtime_pb2
|
||||
from torch import nn
|
||||
|
||||
from src import DistributedBloomConfig
|
||||
from src.data_structures import UID_DELIMITER, RemoteModuleInfo
|
||||
from src.data_structures import UID_DELIMITER, RemoteModuleInfo, ModuleUID
|
||||
from src.dht_utils import _create_remote_modules_from_infos, _get_remote_module_infos
|
||||
|
||||
use_hivemind_log_handler("in_root_logger")
|
||||
@ -32,27 +37,13 @@ class RemoteSequential(nn.Sequential):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.dht = dht
|
||||
self.prefix = prefix
|
||||
self.max_retries = max_retries
|
||||
self.p2p = RemoteExpertWorker.run_coroutine(dht.replicate_p2p())
|
||||
|
||||
self.prefix = prefix
|
||||
self.block_uids = tuple(f"{prefix}{UID_DELIMITER}{i}" for i in range(config.n_layer))
|
||||
logger.debug(f"Remote block uids: {self.block_uids}")
|
||||
self.block_infos: Tuple[RemoteModuleInfo, ...] = tuple(
|
||||
dht.run_coroutine(
|
||||
partial(_get_remote_module_infos, uids=self.block_uids, expiration_time=float("inf")),
|
||||
return_future=False,
|
||||
)
|
||||
)
|
||||
|
||||
self.max_retries = max_retries
|
||||
|
||||
assert len(self.block_infos) == len(self.block_uids)
|
||||
for uid, info in zip(self.block_uids, self.block_infos):
|
||||
assert isinstance(info, (type(None), RemoteModuleInfo)), f"Unexpected dht entry for {uid}: {info}"
|
||||
assert info is not None, f"Found no active peers for block {uid}"
|
||||
assert isinstance(info.peer_ids, set), f"expected peer_ids to be a set, got {info.peer_ids}"
|
||||
assert info.uid == uid, f"The DHT entry for {uid} actually points to {info.uid}"
|
||||
assert len(info.peer_ids) > 0, f"Found no active peers for block {uid}"
|
||||
self.remote_model_info = RemoteModelInfo(dht, self.block_uids)
|
||||
|
||||
def forward(self, inputs: torch.Tensor):
|
||||
assert isinstance(inputs, torch.Tensor) and inputs.ndim == 3 and inputs.shape[-1] == self.config.n_embed
|
||||
@ -80,3 +71,150 @@ class RemoteSequential(nn.Sequential):
|
||||
def __iter__(self):
|
||||
for block_index in range(self.config.n_layer):
|
||||
yield self[block_index]
|
||||
|
||||
def inference_session(self) -> RemoteSequentialInferenceSession:
|
||||
self.remote_model_info.update_()
|
||||
return RemoteExpertWorker.run_coroutine(RemoteSequentialInferenceSession._create(self))
|
||||
|
||||
|
||||
Span = NamedTuple('Span', [('start', int), ('end', Optional[int]), ('peer_id', PeerID)])
|
||||
|
||||
|
||||
@dataclasses.dataclass(frozen=False, init=False)
|
||||
class RemoteModelInfo:
|
||||
"""Stores meta-information about which peers host which blocks - and prepare to form sessions"""
|
||||
dht: DHT
|
||||
block_uids: Tuple[ModuleUID, ...]
|
||||
block_infos: List[Optional[RemoteModuleInfo], ...]
|
||||
spans_by_priority: List[Span] # sorted from best to worst
|
||||
spans_containing_block: Tuple[List[Span], ...]
|
||||
lock_changes: threading.Lock
|
||||
|
||||
def __init__(self, dht: DHT, block_uids: Sequence[ModuleUID]):
|
||||
self.dht = dht
|
||||
self.block_uids = block_uids
|
||||
self.block_infos: List[Optional[RemoteModuleInfo], ...] = [None] * len(self.block_uids)
|
||||
self.spans_by_priority = []
|
||||
self.spans_containing_block = tuple(list() for _ in range(len(self.block_uids)))
|
||||
self.lock_changes = threading.Lock()
|
||||
self.update_()
|
||||
|
||||
for uid, info in zip(self.block_uids, self.block_infos):
|
||||
assert info is not None, f"Found no remote peers for block {uid}"
|
||||
assert self.spans_by_priority and self.spans_containing_block
|
||||
|
||||
def update_(self):
|
||||
with self.lock_changes:
|
||||
self.update_block_infos_()
|
||||
self.spans_by_priority, self.spans_containing_block = self.compute_spans(self.block_infos)
|
||||
|
||||
def update_block_infos_(self):
|
||||
new_block_infos: Sequence[RemoteModuleInfo] = self.dht.run_coroutine(
|
||||
partial(_get_remote_module_infos, uids=self.block_uids, expiration_time=float("inf")),
|
||||
return_future=False)
|
||||
assert len(new_block_infos) == len(self.block_uids)
|
||||
for block_index, (uid, info) in enumerate(zip(self.block_uids, new_block_infos)):
|
||||
if info is None:
|
||||
logger.warning(f"Found no block info for block {uid}")
|
||||
if not isinstance(info, RemoteModuleInfo):
|
||||
logger.warning(f"Unexpected dht entry type for {uid}: {info}")
|
||||
if not info.peer_ids:
|
||||
logger.warning(f"Found no active peers for block {uid}")
|
||||
if info.uid != uid:
|
||||
logger.warning(f"The DHT entry for {uid} actually points to {info.uid}")
|
||||
if not isinstance(info.peer_ids, set):
|
||||
logger.warning(f"Expected peer_ids for {uid} to be a set, got {type(info.peer_ids)}")
|
||||
self.block_infos[block_index] = info
|
||||
|
||||
@staticmethod
|
||||
def compute_spans(block_infos: Sequence[RemoteModuleInfo]):
|
||||
closed_spans = []
|
||||
active_spans = {}
|
||||
for block_index, info in enumerate(block_infos):
|
||||
for peer_id in info.peer_ids:
|
||||
if peer_id not in active_spans:
|
||||
active_spans[peer_id] = Span(start=block_index, end=block_index + 1, peer_id=peer_id)
|
||||
else: # peer_id in active_spans
|
||||
active_spans[peer_id] = active_spans[peer_id]._replace(end=block_index + 1)
|
||||
|
||||
for peer_id in list(active_spans.keys()):
|
||||
if peer_id not in info.peer_ids or block_index == len(block_infos) - 1:
|
||||
closed_spans.append(active_spans.pop(peer_id))
|
||||
assert not active_spans
|
||||
|
||||
closed_spans.sort(key=lambda span: span.end - span.start, reverse=True)
|
||||
|
||||
spans_containing_block = tuple(list() for _ in range(len(block_infos)))
|
||||
for span in closed_spans:
|
||||
for block_index in range(span.start, span.end):
|
||||
spans_containing_block[block_index].append(span)
|
||||
|
||||
return closed_spans, spans_containing_block
|
||||
|
||||
#
|
||||
# class RemoteSequentialInferenceSession:
|
||||
# """An interface to a multi-step *inference* session for a sequence of remote modules"""
|
||||
#
|
||||
# def __init__(self, block):
|
||||
# self.closed = False
|
||||
#
|
||||
# @classmethod
|
||||
# async def _create(cls, remote_sequential: RemoteSequential, **kwargs) -> RemoteSequentialInferenceSession:
|
||||
# """Create a new session for a sequence of modules. This code is meant to be run inside RemoteExpertWorker"""
|
||||
#
|
||||
# remote_sequential.
|
||||
# return cls(remote_module.uid, remote_module.info, inputs_queue, outputs_stream)
|
||||
#
|
||||
# def step(self, new_hidden_states: torch.Tensor):
|
||||
# """Inference step: send a chunk of input tensors and receive a chunk of outputs"""
|
||||
# if self.closed:
|
||||
# raise Exception("Session is closed, cannot perform step")
|
||||
# # serialize inputs and put them into the queue
|
||||
# inputs = (new_hidden_states,)
|
||||
# outputs_serialized = RemoteExpertWorker.run_coroutine(
|
||||
# self._step(
|
||||
# runtime_pb2.ExpertRequest(
|
||||
# uid=self.uid,
|
||||
# tensors=[
|
||||
# serialize_torch_tensor(tensor, proto.compression)
|
||||
# for tensor, proto in zip(inputs, nested_flatten(self.info["forward_schema"]))
|
||||
# ],
|
||||
# )
|
||||
# )
|
||||
# )
|
||||
# outputs = list(map(deserialize_torch_tensor, outputs_serialized.tensors))
|
||||
# assert outputs[0].shape == inputs[0].shape, f"expected outputs[0] to be hidden states but got {outputs[0]}"
|
||||
# return outputs[0]
|
||||
#
|
||||
# async def _step(self, inputs_serialized: runtime_pb2.ExpertRequest) -> runtime_pb2.ExpertResponse:
|
||||
# """Inference step on serialized data. This code is meant to be run inside RemoteExpertWorker"""
|
||||
# await self._inputs_queue.put(inputs_serialized)
|
||||
# return await anext(self._outputs_stream)
|
||||
#
|
||||
# def close(self):
|
||||
# """Finish a given inference session, close the underlying connection"""
|
||||
# if self._outputs_stream is None:
|
||||
# return # already closed
|
||||
# RemoteExpertWorker.run_coroutine(self._aclose_stream())
|
||||
# self._outputs_stream = self._inputs_queue = None
|
||||
# self.closed = True
|
||||
#
|
||||
# async def _aclose_stream(self):
|
||||
# """Close the inference session. This code is meant to be run inside RemoteExpertWorker"""
|
||||
# if self._outputs_stream is None:
|
||||
# return # already closed
|
||||
# await self._inputs_queue.put(runtime_pb2.ExpertRequest()) # empty request will trigger end of session
|
||||
# try:
|
||||
# await anext(self._outputs_stream)
|
||||
# except StopAsyncIteration:
|
||||
# pass
|
||||
#
|
||||
# def __del__(self):
|
||||
# self.close()
|
||||
#
|
||||
# def __enter__(self):
|
||||
# assert not self.closed
|
||||
# return self
|
||||
#
|
||||
# def __exit__(self, *exc_details):
|
||||
# self.close()
|
||||
|
@ -32,7 +32,7 @@ def test_remote_block_exact_match(atol_forward=1e-5, atol_inference=1e-3):
|
||||
(outputs_forward,) = remote_block(inputs)
|
||||
|
||||
outputs_inference = []
|
||||
with remote_block.begin_inference_session() as sess:
|
||||
with remote_block.inference_session() as sess:
|
||||
for i in range(inputs.shape[1]):
|
||||
outputs_inference.append(sess.step(inputs[:, i : i + 1, :]))
|
||||
outputs_inference = torch.cat(outputs_inference, dim=1)
|
||||
|
@ -39,7 +39,7 @@ def test_remote_block_exact_match(atol_inference=1e-4):
|
||||
inputs = torch.randn(1, 8, 4096)
|
||||
|
||||
outputs_inference = []
|
||||
with remote_block.begin_inference_session() as sess:
|
||||
with remote_block.inference_session() as sess:
|
||||
for i in range(inputs.shape[1]):
|
||||
outputs_inference.append(sess.step(inputs[:, i : i + 1, :]))
|
||||
outputs_inference = torch.cat(outputs_inference, dim=1)
|
||||
|
Loading…
Reference in New Issue
Block a user