diff --git a/README.md b/README.md
index a363222..bebdd31 100644
--- a/README.md
+++ b/README.md
@@ -155,7 +155,9 @@ loss.backward()
print("Gradients (norm):", model.transformer.word_embeddings.weight.grad.norm())
```
-Of course, this is a simplified code snippet. For actual training, see our example on "deep" prompt-tuning here: [examples/prompt-tuning-personachat.ipynb](./examples/prompt-tuning-personachat.ipynb).
+Of course, this is a simplified code snippet. For actual training, see our example on "deep" prompt-tuning here.
+- Simple text semantic classification: [examples/prompt-tuning-sst2.ipynb](./examples/prompt-tuning-sst2.ipynb).
+- A personified chatbot: [examples/prompt-tuning-personachat.ipynb](./examples/prompt-tuning-personachat.ipynb).
Here's a [more advanced tutorial](https://github.com/bigscience-workshop/petals/wiki/Launch-your-own-swarm) that covers 8-bit quantization and best practices for running Petals.
diff --git a/examples/prompt-tuning-personachat.ipynb b/examples/prompt-tuning-personachat.ipynb
index 77312fd..4f85d6a 100644
--- a/examples/prompt-tuning-personachat.ipynb
+++ b/examples/prompt-tuning-personachat.ipynb
@@ -48,7 +48,11 @@
" try:\n",
" subprocess.check_output([\"nvidia-smi\", \"-L\"])\n",
" except subprocess.CalledProcessError as e:\n",
- " subprocess.run(['rm', '-r', '/usr/local/cuda/lib64'])"
+ " subprocess.run(['rm', '-r', '/usr/local/cuda/lib64'])\n",
+ "\n",
+ " sys.path.insert(0, './petals/')\n",
+ "else:\n",
+ " sys.path.insert(0, \"..\")"
]
},
{
@@ -60,7 +64,6 @@
"source": [
"import os\n",
"import sys\n",
- "sys.path.insert(0, \"..\") # for colab change to sys.path.insert(0, './petals/')\n",
" \n",
"import torch\n",
"import transformers\n",
diff --git a/examples/prompt-tuning-sst2.ipynb b/examples/prompt-tuning-sst2.ipynb
new file mode 100644
index 0000000..0e0542d
--- /dev/null
+++ b/examples/prompt-tuning-sst2.ipynb
@@ -0,0 +1,327 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "a07e0f5e",
+ "metadata": {},
+ "source": [
+ "
\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "# Distributed Bloom for Text Classification using Prompt Tuning\n",
+ "\n",
+ "In this example, we show how to use [prompt tuning](https://aclanthology.org/2021.emnlp-main.243.pdf) to adapt a test 6B version of the [BLOOM](https://huggingface.co/bigscience/bloom) model for a specific downstream task. We will run this model in a decentralized fashion using [Petals](https://github.com/bigscience-workshop/petals). Petals servers will maintain the BLOOM blocks (they are kept unchanged during adaptation), and the gradient descent will learn a few prefix tokens stored on a Petals client.\n",
+ "\n",
+ "We will adapt the BLOOM model for the classification task using the [SST-2 dataset](https://nlp.stanford.edu/sentiment/). This dataset is a binary classification task, where the goal is to predict whether a sentence is positive or negative. The SST-2 dataset is a subset of the Stanford Sentiment Treebank, and it is available in the [Hugging Face Datasets](https://huggingface.co/datasets) library.\n",
+ "\n",
+ "To open this notebook in colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/bigscience-workshop/petals/blob/main/examples/prompt-tuning-sst2.ipynb)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a3f8526f",
+ "metadata": {},
+ "source": [
+ "First, we have to prepare all dependencies."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "73bbc648",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# This block is only need for colab users. It will change nothing if you are running this notebook locally.\n",
+ "import subprocess\n",
+ "import sys\n",
+ "\n",
+ "\n",
+ "IN_COLAB = 'google.colab' in sys.modules\n",
+ "\n",
+ "if IN_COLAB:\n",
+ " subprocess.run(['git', 'clone', 'https://github.com/bigscience-workshop/petals'])\n",
+ " subprocess.run(['pip', 'install', '-r', 'petals/requirements.txt'])\n",
+ " subprocess.run(['pip', 'install', 'datasets', 'lib64'])\n",
+ "\n",
+ " try:\n",
+ " subprocess.check_output([\"nvidia-smi\", \"-L\"])\n",
+ " except subprocess.CalledProcessError as e:\n",
+ " subprocess.run(['rm', '-r', '/usr/local/cuda/lib64'])\n",
+ "\n",
+ " sys.path.insert(0, './petals/')\n",
+ "else:\n",
+ " sys.path.insert(0, \"..\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b4ab6ca7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import sys\n",
+ " \n",
+ "import torch\n",
+ "import transformers\n",
+ "import wandb\n",
+ "from datasets import load_dataset, load_metric\n",
+ "from tqdm import tqdm\n",
+ "from torch.optim import AdamW\n",
+ "from torch.utils.data import DataLoader\n",
+ "from transformers import get_scheduler\n",
+ "\n",
+ "# Import a Petals model\n",
+ "from src.client.remote_model import DistributedBloomForSequenceClassification"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1bf07b5d",
+ "metadata": {},
+ "source": [
+ "Let's set some hyperparameters for training:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f04ba4d2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "MODEL_NAME = ... # select model you like\n",
+ "INITIAL_PEERS = [...] # add your peers adresses here, like \"/ip4/192.168.1.2/tcp/31000/p2p/Qma....\"\n",
+ "NUM_PREFIX_TOKENS = 16\n",
+ "DEVICE = 'cpu'\n",
+ "BATCH_SIZE = 4\n",
+ "LR = 1e-2\n",
+ "WEIGHT_DECAY = 0.0\n",
+ "NUM_SAMPLES = 1000\n",
+ "NUM_EPOCHS = 3\n",
+ "SEED = 42\n",
+ "MODEL_MAX_LENGTH = 64\n",
+ "TUNING_MODE = 'ptune' # choose between ['ptune', 'deep_ptune'] "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d38316bd",
+ "metadata": {},
+ "source": [
+ "Prepare tokenizer and distributed model, connect it to servers."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "03c6e53e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)\n",
+ "tokenizer.padding_side = 'right'\n",
+ "tokenizer.model_max_length = MODEL_MAX_LENGTH\n",
+ "model = DistributedBloomForSequenceClassification.from_pretrained(\n",
+ " MODEL_NAME, \n",
+ " initial_peers=INITIAL_PEERS, \n",
+ " pre_seq_len=NUM_PREFIX_TOKENS, \n",
+ " tuning_mode=TUNING_MODE\n",
+ ").to(DEVICE)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "042e3786",
+ "metadata": {},
+ "source": [
+ "Let's prepare the SST-2 dataset. We need just one preprocessing function to tokenize the dataset."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "9c44d516",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "task = 'sst2'\n",
+ "\n",
+ "dataset = load_dataset(\"glue\", task)\n",
+ "\n",
+ "def preprocess_function(examples):\n",
+ " return tokenizer(examples[\"sentence\"], padding='max_length', truncation=True)\n",
+ "\n",
+ "tokenized_datasets = dataset.map(preprocess_function, batched=True)\n",
+ "tokenized_datasets = tokenized_datasets.remove_columns([\"sentence\", \"idx\", \"attention_mask\"])\n",
+ "tokenized_datasets = tokenized_datasets.rename_column(\"label\", \"labels\")\n",
+ "tokenized_datasets.set_format(\"torch\")\n",
+ "\n",
+ "train_dataset = tokenized_datasets[\"train\"].shuffle(seed=SEED)\n",
+ "valid_dataset = tokenized_datasets[\"validation\"].shuffle(seed=SEED)\n",
+ "\n",
+ "train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=BATCH_SIZE, drop_last=True)\n",
+ "valid_dataloader = DataLoader(valid_dataset, batch_size=BATCH_SIZE)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2a3f3590",
+ "metadata": {},
+ "source": [
+ "To check training, we need a metric function. For SST-2 task is accuracy. We will load it from the datasets library."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1e1812be",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "metric = load_metric('glue', task)\n",
+ "\n",
+ "def eval_metrics(model, dataloader, device='cpu'):\n",
+ " model.eval()\n",
+ " for batch in dataloader:\n",
+ " batch = {k: v.to(device) for k, v in batch.items()}\n",
+ " \n",
+ " with torch.no_grad():\n",
+ " outputs = model(**batch)\n",
+ "\n",
+ " logits = outputs.logits\n",
+ " predictions = torch.argmax(logits, dim=-1)\n",
+ " metric.add_batch(predictions=predictions, references=batch[\"labels\"])\n",
+ " model.train()\n",
+ " return metric.compute()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ef4323fd",
+ "metadata": {},
+ "source": [
+ "Before setting up optimizers, check the model parameters that will be trained."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "9cc0ba34",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "for n, p in model.named_parameters():\n",
+ " if p.requires_grad:\n",
+ " print(n, p.requires_grad, p.device)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "59cffce7",
+ "metadata": {},
+ "source": [
+ "The optimizer will only work on **prompts**, they are only trainable parameters. Let's initialize optimizer and learning rate scheduler."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "ef9bf344",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "optimizer = AdamW(model.parameters(), lr=LR, weight_decay=WEIGHT_DECAY)\n",
+ "\n",
+ "lr_scheduler = get_scheduler(\n",
+ " name=\"linear\", optimizer=optimizer, num_warmup_steps=0, num_training_steps=len(train_dataloader)\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "423c56d5",
+ "metadata": {},
+ "source": [
+ "Let's initialize wandb for logging and start the training loop!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d9e46807",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "wandb.init(\n",
+ " project=\"bloom-sst-2\",\n",
+ " config={\n",
+ " \"num_epochs\": NUM_EPOCHS,\n",
+ " \"num_samples\": NUM_SAMPLES,\n",
+ " \"batch_size\": BATCH_SIZE,\n",
+ " \"learning_rate\": LR,\n",
+ " \"weight_decay\": WEIGHT_DECAY,\n",
+ " \"num_prefix_tokens\": NUM_PREFIX_TOKENS,\n",
+ " \"model_name\": MODEL_NAME,\n",
+ " \"seed\": SEED,\n",
+ " }\n",
+ ")\n",
+ "\n",
+ "for epoch in range(NUM_EPOCHS):\n",
+ " for batch in tqdm(train_dataloader):\n",
+ " batch = {k: v.to(DEVICE) for k, v in batch.items()}\n",
+ "\n",
+ " model.train()\n",
+ " outputs = model(**batch)\n",
+ " loss = outputs.loss\n",
+ " loss.backward()\n",
+ "\n",
+ " optimizer.step()\n",
+ " lr_scheduler.step()\n",
+ " optimizer.zero_grad()\n",
+ "\n",
+ " wandb.log({\"Train Loss\": loss})\n",
+ "\n",
+ " accuracy = eval_metrics(model, valid_dataloader, device=DEVICE)\n",
+ " wandb.log({\"Valid Accuracy\": accuracy}, commit=False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "51770911",
+ "metadata": {},
+ "source": [
+ "Our model have been trained!"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3.8.10 64-bit",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.9"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}