push converted model to hub

This commit is contained in:
justheuristic 2022-06-19 19:06:35 +03:00
parent 15d0ea7129
commit 736f1d1085
2 changed files with 35 additions and 20 deletions

View File

@ -17,9 +17,10 @@ conda activate bloom-demo
conda install -y -c conda-forge cudatoolkit-dev==11.3.1 cudatoolkit==11.3.1 cudnn==8.2.1.32
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html
pip install accelerate==0.10.0 huggingface-hub==0.7.0
pip install bitsandbytes-cuda113==0.26.0
pip install https://github.com/learning-at-home/hivemind/archive/master.zip
pip install https://github.com/huggingface/transformers/archive/224bde91caff4ccfd12277ab5e9bf97c61e22ee9.zip
pip install https://github.com/huggingface/transformers/archive/6589e510fa4e6c442059de2fab84752535de9b23.zip
```

View File

@ -1,12 +1,13 @@
import argparse
import copy
import os
import psutil
import torch.backends.quantized
import transformers
from hivemind.utils.logging import get_logger, use_hivemind_log_handler
from tqdm.auto import trange
from huggingface_hub import Repository
import torch.nn as nn
from tqdm.auto import tqdm
use_hivemind_log_handler("in_root_logger")
logger = get_logger(__file__)
@ -16,16 +17,22 @@ DTYPE_MAP = dict(bfloat16=torch.bfloat16, float16=torch.float16, float32=torch.f
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Load bloom layers and convert to 8-bit using torch quantization.")
parser.add_argument("--output_path", required=True, type=str, help="Save quantized layers to this folder")
parser.add_argument("--model", type=str, default="bigscience/bloom", help="Model name for from_pretrained")
parser.add_argument("--model", type=str, default="bigscience/bloom-6b3", help="Model name for from_pretrained")
parser.add_argument("--revision", type=str, default=None, help="Optional commit id from HF hub")
parser.add_argument("--torch_dtype", type=str, default="auto", help="Load initial model in this dtype")
parser.add_argument("--output_path", type=str, default='./converted_model', help="Track output repo to this folder")
parser.add_argument("--output_repo", type=str, default='bigscience/test-bloomd', help="Push to this HF hub repo")
parser.add_argument("--base_branch", type=str, default='main', help="Use this branch as reference point")
parser.add_argument("--client_branch", type=str, default='client', help="Save client version to this branch")
parser.add_argument("--block_branch_prefix", type=str, default='block_', help="Save blocks to branches with this prefix")
parser.add_argument("--commit_message", type=str, default='push-o-matic', help="Use this commit message for all parts")
parser.add_argument("--use_auth_token", type=str, default=None, help="auth token for from_pretrained")
args = parser.parse_args()
free_ram_gb = psutil.virtual_memory().available / 2**30
free_ram_gb = psutil.virtual_memory().available / 2 ** 30
if free_ram_gb < 400:
logger.warning(f"ACHTUNG! converting bloom-176b will use up 370-400GB RAM, you have {free_ram_gb:.3f} free")
logger.warning(f"ACHTUNG! converting bloom-176b will use up 350-400GB RAM, you have {free_ram_gb:.3f} free")
assert args.torch_dtype in DTYPE_MAP, f"torch_dtype must be one of {list(DTYPE_MAP.keys())}"
if os.path.exists(args.output_path) and (
@ -33,21 +40,28 @@ if __name__ == "__main__":
):
raise FileExistsError(f"Output path {args.output_path} already exists and is not an empty directory")
model = transformers.BloomForCausalLM.from_pretrained(
model = transformers.AutoModelForCausalLM.from_pretrained(
args.model, use_auth_token=args.use_auth_token, revision=args.revision, torch_dtype=DTYPE_MAP[args.torch_dtype]
)
qconfig = torch.quantization.get_default_qconfig("fbgemm")
torch.backends.quantized.engine = "fbgemm"
tokenizer = transformers.AutoTokenizer.from_pretrained(
args.model, use_auth_token=args.use_auth_token, revision=args.revision
)
os.makedirs(args.output_path, exist_ok=True)
for i in trange(len(model.transformer.h)):
layer_fp32 = copy.deepcopy(model.transformer.h[i]).float()
layer_quantized = torch.quantization.quantize_dynamic(
layer_fp32, {torch.nn.Linear: qconfig}, dtype=torch.qint8, inplace=True
)
torch.save(layer_quantized.state_dict(), os.path.join(args.output_path, f"block_{i}_qint8.pth"))
repo = Repository(args.output_path, clone_from=args.output_repo, use_auth_token=args.use_auth_token)
repo.git_pull()
model.transformer.h = torch.nn.ModuleList()
torch.save(model.state_dict(), os.path.join(args.output_path, f"client.pth"))
transformer_blocks = model.transformer.h
for i, block in enumerate(tqdm(transformer_blocks)):
repo.git_checkout(args.base_branch, create_branch_ok=True)
with repo.commit(
commit_message=args.commit_message, branch=args.block_branch_prefix + str(i), track_large_files=True
):
print(block.self_attention.layer_number)
torch.save(block.state_dict(), "./pytorch_model.bin")
repo.git_checkout(args.base_branch, create_branch_ok=True)
with repo.commit(commit_message=args.commit_message, branch=args.client_branch, track_large_files=True):
model.transformer.h = nn.ModuleList()
model.save_pretrained(".")
logger.info(f"Converted {args.model} and saved to {args.output_repo}")