mirror of
https://github.com/bigscience-workshop/petals
synced 2024-11-19 21:25:38 +00:00
Support --load_in_8bit on pre-Turing GPUs (#113)
- Linear8bitLt now supports for pre-turing GPUs by temporarily upcasting quantized weights. - added a test for linear8bitlt accuracy with the new fallback, the accuracy is similar than the real thing, (slightly better due to non-quantized A) - performance is roughly halfway between the default mode and memory_efficient_backward Alternatives considered: - cupy - slow, casting to float internally - triton - fast but unstable af. every 3rd attempt to matmul is a segfault - bnb.functional.igemm (no lt) - "CuBLAS Error 8" on old GPUs Co-authored-by: Aleksandr Borzunov <borzunov.alexander@gmail.com>
This commit is contained in:
parent
1ea44b0d3c
commit
617d70f7dc
@ -9,11 +9,12 @@ Based on: https://github.com/TimDettmers/bitsandbytes/blob/main/csrc/kernels.cu#
|
||||
Exact match tests: see $REPO/tests/test_linear8bitlt.py
|
||||
"""
|
||||
import dataclasses
|
||||
import warnings
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import bitsandbytes.functional as F
|
||||
import torch
|
||||
from bitsandbytes.autograd._functions import MatMul8bitLt, MatmulLtState
|
||||
from bitsandbytes.autograd._functions import GlobalOutlierPooler, MatMul8bitLt, MatmulLtState, prod
|
||||
from bitsandbytes.nn import Linear8bitLt
|
||||
|
||||
|
||||
@ -88,7 +89,7 @@ class CustomLinear8bitLt(Linear8bitLt):
|
||||
|
||||
out = custom_matmul8bitlt(x, self.weight, bias=self.bias, state=self.state)
|
||||
if not self.state.has_fp16_weights:
|
||||
if self.state.CB is not None:
|
||||
if self.state.CB is not None and self.state.CxB is not None:
|
||||
# we converted 8-bit row major to turing/ampere format in the first inference pass
|
||||
# we no longer need the row-major weight
|
||||
del self.state.CB
|
||||
@ -99,6 +100,7 @@ class CustomLinear8bitLt(Linear8bitLt):
|
||||
@dataclasses.dataclass(init=True)
|
||||
class CustomMatmulLtState(MatmulLtState):
|
||||
tile_indices: Optional[torch.Tensor] = None
|
||||
force_no_igemmlt: bool = False
|
||||
|
||||
def get_tile_size(self):
|
||||
assert self.formatB in (
|
||||
@ -123,9 +125,155 @@ def custom_matmul8bitlt(
|
||||
|
||||
|
||||
class CustomMatMul8bitLt(MatMul8bitLt):
|
||||
# forward is the same as in inference-only CxB
|
||||
# forward is the same, but we added the fallback for pre-turing GPUs
|
||||
# backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None")
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, A, B, out=None, bias=None, state=CustomMatmulLtState):
|
||||
using_igemmlt = torch.cuda.get_device_capability(device=A.device) >= (7, 5) and not state.force_no_igemmlt
|
||||
# default to pytorch behavior if inputs are empty
|
||||
ctx.is_empty = False
|
||||
if prod(A.shape) == 0:
|
||||
ctx.is_empty = True
|
||||
ctx.A = A
|
||||
ctx.B = B
|
||||
ctx.bias = bias
|
||||
if A.shape[-1] == B.shape[0]:
|
||||
return torch.empty(A.shape[:-1] + B.shape[1:], dtype=A.dtype, device=A.device)
|
||||
else:
|
||||
return torch.empty(A.shape[:-1] + B.shape[:1], dtype=A.dtype, device=A.device)
|
||||
|
||||
# 1. Quantize A
|
||||
# 2. Quantize B
|
||||
# 3. Matmul
|
||||
# 4. Mixed-precision decomposition matmul
|
||||
# 5. Save state
|
||||
formatB = state.formatB
|
||||
input_shape = A.shape
|
||||
if state.outlier_pool is None:
|
||||
state.outlier_pool = GlobalOutlierPooler.get_instance()
|
||||
|
||||
# Cast A to fp16
|
||||
if A.dtype != torch.float16:
|
||||
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
|
||||
|
||||
# 1. Quantize A
|
||||
if len(A.shape) == 3:
|
||||
A = A.view(-1, A.shape[-1]).contiguous()
|
||||
CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(A.to(torch.float16), threshold=state.threshold)
|
||||
|
||||
if state.threshold > 0.0 and coo_tensorA is not None:
|
||||
if state.has_fp16_weights:
|
||||
idx = torch.unique(coo_tensorA.colidx).long()
|
||||
CA[:, idx] = 0
|
||||
CAt[:, idx] = 0
|
||||
subA = A[:, idx]
|
||||
state.subB = B[:, idx].t().contiguous()
|
||||
state.idx = idx
|
||||
else:
|
||||
if state.CxB is None and using_igemmlt:
|
||||
# B in in 8-bit row-major, we can transform it back to 16-bit to extract outlier dimensions
|
||||
# we also need to convert it to the turing/ampere format
|
||||
state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
|
||||
else:
|
||||
if not state.has_fp16_weights and state.CxB is None and using_igemmlt:
|
||||
state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
|
||||
subA = None
|
||||
|
||||
# 2. Quantize B
|
||||
if state.has_fp16_weights:
|
||||
has_grad = True if (getattr(B, "grad", None) is not None) else False
|
||||
is_transposed = not B.is_contiguous() and B.shape[0] == B.stride(1)
|
||||
if is_transposed:
|
||||
B = B.contiguous()
|
||||
|
||||
if (state.is_training and not has_grad) or state.CxB is None:
|
||||
state.reset_grads()
|
||||
(
|
||||
CB,
|
||||
state.CBt,
|
||||
state.SCB,
|
||||
state.SCBt,
|
||||
coo_tensorB,
|
||||
) = F.double_quant(B.to(torch.float16))
|
||||
if using_igemmlt:
|
||||
state.CxB, state.SB = F.transform(CB, to_order=formatB)
|
||||
else:
|
||||
state.CB = CB
|
||||
else:
|
||||
has_grad = False
|
||||
|
||||
if coo_tensorA is not None and not state.has_fp16_weights:
|
||||
# extract outliers
|
||||
|
||||
outlier_idx = torch.unique(coo_tensorA.colidx)
|
||||
state.idx = outlier_idx
|
||||
# state.outlier_pool.add_outliers(outlier_idx, A.shape[-1])
|
||||
# if state.use_pool and state.outlier_pool.model_dim == A.shape[-1]:
|
||||
# # do not use pool for 2nd FFN layer
|
||||
# state.idx = state.outlier_pool.get_current_outlier_idx().to(A.device)
|
||||
# else:
|
||||
# state.idx = outlier_idx
|
||||
if state.CxB is not None:
|
||||
outliers = F.extract_outliers(state.CxB, state.SB, state.idx.int())
|
||||
else:
|
||||
outliers = state.CB[:, state.idx.long()].clone()
|
||||
|
||||
state.subB = (outliers * state.SCB.view(-1, 1) / 127.0).t().contiguous().to(A.dtype)
|
||||
CA[:, state.idx.long()] = 0
|
||||
CAt[:, state.idx.long()] = 0
|
||||
subA = A[:, state.idx.long()]
|
||||
|
||||
shapeB = state.SB[0] if state.SB else B.shape
|
||||
|
||||
if len(input_shape) == 3:
|
||||
output_shape = (input_shape[0], input_shape[1], shapeB[0])
|
||||
else:
|
||||
output_shape = (input_shape[0], shapeB[0])
|
||||
|
||||
# 3. Matmul
|
||||
if using_igemmlt:
|
||||
C32A, SA = F.transform(CA, "col32")
|
||||
out32, Sout32 = F.igemmlt(C32A, state.CxB, SA, state.SB)
|
||||
if bias is None or bias.dtype == torch.float16:
|
||||
# we apply the fused bias here
|
||||
output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=bias)
|
||||
output = output.to(A.dtype)
|
||||
else: # apply bias separately
|
||||
output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=None)
|
||||
output = output.to(A.dtype).add_(bias)
|
||||
|
||||
else:
|
||||
A_wo_outliers = A.clone()
|
||||
if state.idx is not None:
|
||||
A_wo_outliers[:, state.idx.long()] = 0
|
||||
output = torch.nn.functional.linear(A_wo_outliers, state.CB.to(A.dtype))
|
||||
output = output.mul_(state.SCB.unsqueeze(0).mul(1.0 / 127.0))
|
||||
if bias is not None:
|
||||
output = output.add_(bias)
|
||||
|
||||
# 4. Mixed-precision decomposition matmul
|
||||
if coo_tensorA is not None and subA is not None:
|
||||
output += torch.matmul(subA, state.subB)
|
||||
|
||||
# 5. Save state
|
||||
ctx.state = state
|
||||
|
||||
ctx.formatB = formatB
|
||||
ctx.grad_shape = input_shape
|
||||
ctx.dtype_A, ctx.dtype_B, ctx.dtype_bias = A.dtype, B.dtype, None if bias is None else bias.dtype
|
||||
|
||||
if any(ctx.needs_input_grad[:2]):
|
||||
ctx.tensors = (CAt, subA)
|
||||
ctx.tensor_states = (SCAt, state.idx)
|
||||
else:
|
||||
ctx.tensors = [None, None]
|
||||
ctx.tensor_states = (None, None)
|
||||
ctx.save_for_backward(None, None)
|
||||
|
||||
clone_func = torch.clone if len(output_shape) == 3 else lambda x: x
|
||||
return clone_func(output.view(output_shape))
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
if ctx.is_empty:
|
||||
|
@ -71,3 +71,38 @@ def test_linear_exact_match():
|
||||
assert not linear_custom.state.has_fp16_weights
|
||||
assert linear_custom.state.CB is None
|
||||
assert linear_custom.state.CxB is not None
|
||||
|
||||
|
||||
@pytest.mark.skipif(not torch.cuda.is_available(), reason="this test requires a GPU")
|
||||
def test_linear_no_igemmlt():
|
||||
linear = torch.nn.Linear(1024, 3072)
|
||||
x = torch.randn(3, 1024, dtype=torch.half)
|
||||
linear_custom = CustomLinear8bitLt(
|
||||
linear.in_features,
|
||||
linear.out_features,
|
||||
linear.bias is not None,
|
||||
has_fp16_weights=False,
|
||||
threshold=6.0,
|
||||
)
|
||||
linear_custom.state.force_no_igemmlt = True
|
||||
|
||||
linear_custom.weight = bnb.nn.Int8Params(
|
||||
linear.weight.data.clone(), requires_grad=False, has_fp16_weights=False
|
||||
).to(linear.weight.dtype)
|
||||
linear_custom.bias = linear.bias
|
||||
linear_custom.cuda()
|
||||
linear.half().cuda()
|
||||
|
||||
x_ref = x.clone().cuda().requires_grad_(True)
|
||||
x_ours = x.clone().cuda().requires_grad_(True)
|
||||
fx_ref = linear(x_ref).float()
|
||||
grad_proj = torch.randn_like(fx_ref)
|
||||
(fx_ref * grad_proj).mean().backward()
|
||||
|
||||
fx_ours = linear_custom(x_ours).float()
|
||||
(fx_ours * grad_proj).mean().backward()
|
||||
assert torch.allclose(fx_ref, fx_ours, atol=0.02)
|
||||
assert torch.allclose(x_ref.grad, x_ours.grad, atol=0.01)
|
||||
assert not linear_custom.state.has_fp16_weights
|
||||
assert linear_custom.state.CB is not None
|
||||
assert linear_custom.state.CxB is None
|
||||
|
Loading…
Reference in New Issue
Block a user