mirror of
https://github.com/bigscience-workshop/petals
synced 2024-11-16 06:12:50 +00:00
adopt transformers bloom model
Co-authored-by: Thomwolf <thomwolf@gmail.com> Co-authored-by: Thomas Wolf <thomas@huggingface.co> Co-authored-by: thomasw21 <24695242+thomasw21@users.noreply.github.com> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: sIncerass <sheng.s@berkeley.edu> Co-authored-by: Stas Bekman <stas00@users.noreply.github.com> Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com> Co-authored-by: Nicolas Patry <Narsil@users.noreply.github.com> Co-authored-by: thomasw21 <thomasw21@users.noreply.github.com> Co-authored-by: sgugger <sgugger@users.noreply.github.com> Co-authored-by: patrickvonplaten <patrickvonplaten@users.noreply.github.com> Co-authored-by: LysandreJik <LysandreJik@users.noreply.github.com> Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by: justheuristic <justheuristic@gmail.com> Co-authored-by: Stas Bekman <stas@stason.org>
This commit is contained in:
parent
99059ae667
commit
51e96ac19b
0
src/__init__.py
Normal file
0
src/__init__.py
Normal file
273
src/layer.py
Normal file
273
src/layer.py
Normal file
@ -0,0 +1,273 @@
|
||||
"""
|
||||
Bloom intermediate layer
|
||||
Based on https://github.com/huggingface/transformers/commit/ca2a55e9dfb245527b5e1c954fec6ffbb7aef07b
|
||||
"""
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import LayerNorm
|
||||
|
||||
from src.ops import BloomScaledSoftmax, attention_mask_func, pre_process_alibi_for_pad, split_tensor_along_last_dim, \
|
||||
dropout_add, BloomGelu
|
||||
|
||||
|
||||
class BloomAttention(nn.Module):
|
||||
def __init__(self, config, layer_number=None):
|
||||
super().__init__()
|
||||
|
||||
self.pretraining_tp = config.pretraining_tp
|
||||
self.slow_but_exact = config.slow_but_exact
|
||||
|
||||
self.hidden_size = config.hidden_size
|
||||
self.num_heads = config.n_head
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
self.split_size = self.hidden_size
|
||||
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
||||
self.masked_softmax_fusion = config.masked_softmax_fusion
|
||||
self.hidden_dropout = config.hidden_dropout
|
||||
|
||||
if self.head_dim * self.num_heads != self.hidden_size:
|
||||
raise ValueError(
|
||||
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
|
||||
f" {self.num_heads})."
|
||||
)
|
||||
|
||||
# Layer-wise attention scaling
|
||||
self.layer_number = max(1, layer_number)
|
||||
self.norm_factor = math.sqrt(self.head_dim) * self.layer_number
|
||||
|
||||
# Scaled Softmax
|
||||
self.scale_mask_softmax = BloomScaledSoftmax(
|
||||
self.masked_softmax_fusion,
|
||||
attention_mask_func,
|
||||
self.attention_softmax_in_fp32,
|
||||
self.layer_number,
|
||||
)
|
||||
|
||||
self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True)
|
||||
self.dense = nn.Linear(self.hidden_size, self.hidden_size)
|
||||
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
residual,
|
||||
layer_past=None,
|
||||
attention_mask=None,
|
||||
alibi=None,
|
||||
head_mask=None,
|
||||
use_cache=False,
|
||||
output_attentions=False,
|
||||
):
|
||||
# hidden_states: [batch_size, seq_length, hidden_size]
|
||||
# repeat alibi tensor with the batch size
|
||||
alibi = alibi.repeat(hidden_states.shape[0], 1, 1).to(hidden_states.device)
|
||||
|
||||
# apply preprocessing if the input is padded
|
||||
if attention_mask is not None and 0 in attention_mask:
|
||||
alibi = pre_process_alibi_for_pad(alibi, attention_mask, self.num_heads)
|
||||
|
||||
mixed_x_layer = self.query_key_value(hidden_states)
|
||||
|
||||
# [batch_size, seq_length, 3 x hidden_size] --> [batch_size, seq_length, num_heads, 3 x head_dim]
|
||||
new_tensor_shape = mixed_x_layer.size()[:-1] + (self.num_heads, 3 * self.head_dim)
|
||||
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
||||
|
||||
# [batch_size, seq_length, num_heads, 3 x head_dim] --> 3 [batch_size, seq_length, num_heads, head_dim]
|
||||
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
|
||||
|
||||
if layer_past is not None:
|
||||
past_key, past_value = layer_past
|
||||
key_layer = torch.cat((past_key.type_as(key_layer), key_layer), dim=1)
|
||||
value_layer = torch.cat((past_value.type_as(value_layer), value_layer), dim=1)
|
||||
|
||||
if use_cache is True:
|
||||
present = (key_layer, value_layer)
|
||||
else:
|
||||
present = None
|
||||
|
||||
# [batch_size, head_dim, q_length, k_length]
|
||||
output_size = (query_layer.size(0), query_layer.size(2), query_layer.size(1), key_layer.size(1))
|
||||
|
||||
# [batch_size, q_length, num_heads, head_dim] -> [q_length, batch_size * num_heads, head_dim]
|
||||
query_layer = query_layer.transpose(1, 0).reshape(output_size[2], output_size[0] * output_size[1], -1)
|
||||
|
||||
# [batch_size, k_length, num_heads, head_dim] -> [k_length, batch_size * num_heads, head_dim]
|
||||
key_layer = key_layer.transpose(1, 0).reshape(output_size[3], output_size[0] * output_size[1], -1)
|
||||
|
||||
# slice alibi tensor until the query length
|
||||
sliced_alibi = alibi[: output_size[0] * output_size[1], :, : output_size[3]]
|
||||
|
||||
# Raw attention scores. [batch_size * num_heads, q_length, k_length]
|
||||
beta = 1.0 / self.layer_number
|
||||
|
||||
matmul_result = torch.baddbmm(
|
||||
sliced_alibi,
|
||||
query_layer.transpose(1, 0),
|
||||
key_layer.transpose(1, 0).transpose(1, 2),
|
||||
beta=beta,
|
||||
alpha=(1.0 / self.norm_factor),
|
||||
)
|
||||
|
||||
# change view to [batch_size, num_heads, q_length, k_length]
|
||||
attention_scores = matmul_result.view(*output_size)
|
||||
|
||||
# attention scores and attention mask [b, np, sq, sk]
|
||||
max_positions = max(attention_scores.shape[-1], attention_scores.shape[-2])
|
||||
attention_probs = self.scale_mask_softmax(attention_scores, attention_mask, max_positions).to(
|
||||
value_layer.dtype
|
||||
)
|
||||
attention_probs = self.attention_dropout(attention_probs)
|
||||
|
||||
if head_mask is not None:
|
||||
attention_probs = attention_probs * head_mask
|
||||
|
||||
# context layer shape: [batch_size, num_heads, q_length, head_dim]
|
||||
output_size = (value_layer.size(0), value_layer.size(2), query_layer.size(0), value_layer.size(3))
|
||||
|
||||
# change view [k_length, batch_size x num_heads, head_dim]
|
||||
value_layer = value_layer.transpose(1, 0).reshape(value_layer.size(1), output_size[0] * output_size[1], -1)
|
||||
|
||||
# change view [batch_size x num_heads, q_length, k_length]
|
||||
attention_probs_reshaped = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
||||
|
||||
# matmul: [batch_size * num_heads, q_length, head_dim]
|
||||
context_layer = torch.bmm(attention_probs_reshaped, value_layer.transpose(0, 1))
|
||||
|
||||
# change view [batch_size, num_heads, q_length, head_dim]
|
||||
context_layer = context_layer.view(*output_size)
|
||||
|
||||
# [batchs_size, num_heads, q_length, head_dim] --> [q_length, batch_size, num_heads, head_dim]
|
||||
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
||||
|
||||
# [q_length, batch_size, num_heads, head_dim] --> [q_length, batch_size, hidden_size]
|
||||
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size,)
|
||||
|
||||
context_layer = context_layer.view(*new_context_layer_shape)
|
||||
|
||||
# Output. [q_length, batch_size, hidden_size]
|
||||
|
||||
# aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232
|
||||
if self.pretraining_tp > 1 and self.slow_but_exact:
|
||||
slices = context_layer.shape[-1] / self.pretraining_tp
|
||||
output_tensor = torch.zeros_like(context_layer)
|
||||
for i in range(self.pretraining_tp):
|
||||
output_tensor = output_tensor + nn.functional.linear(
|
||||
context_layer[:, :, int(i * slices) : int((i + 1) * slices)],
|
||||
self.dense.weight[:, int(i * slices) : int((i + 1) * slices)],
|
||||
)
|
||||
else:
|
||||
output_tensor = self.dense(context_layer)
|
||||
|
||||
output = output_tensor.transpose(1, 0)
|
||||
|
||||
output = dropout_add(output, residual, self.hidden_dropout, self.training)
|
||||
|
||||
outputs = (output, present)
|
||||
if output_attentions:
|
||||
outputs += (attention_probs,)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
class BloomMLP(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
hidden_size = config.hidden_size
|
||||
|
||||
self.pretraining_tp = config.pretraining_tp
|
||||
self.slow_but_exact = config.slow_but_exact
|
||||
self.dense_h_to_4h = nn.Linear(hidden_size, 4 * hidden_size)
|
||||
self.dense_4h_to_h = nn.Linear(4 * hidden_size, hidden_size)
|
||||
self.hidden_dropout = config.hidden_dropout
|
||||
self.gelu_impl = BloomGelu()
|
||||
|
||||
def forward(self, hidden_states, residual):
|
||||
hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states))
|
||||
|
||||
if self.pretraining_tp > 1 and self.slow_but_exact:
|
||||
intermediate_output = torch.zeros_like(residual)
|
||||
slices = self.dense_4h_to_h.weight.shape[-1] / self.pretraining_tp
|
||||
for i in range(self.pretraining_tp):
|
||||
intermediate_output = intermediate_output + nn.functional.linear(
|
||||
hidden_states[:, :, int(i * slices) : int((i + 1) * slices)],
|
||||
self.dense_4h_to_h.weight[:, int(i * slices) : int((i + 1) * slices)],
|
||||
)
|
||||
else:
|
||||
intermediate_output = self.dense_4h_to_h(hidden_states)
|
||||
|
||||
output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class BloomBlock(nn.Module):
|
||||
def __init__(self, config, layer_number=None):
|
||||
super().__init__()
|
||||
hidden_size = config.hidden_size
|
||||
|
||||
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
||||
self.n_head = config.n_head
|
||||
self.self_attention = BloomAttention(config, layer_number=layer_number)
|
||||
self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
||||
|
||||
self.mlp = BloomMLP(config)
|
||||
|
||||
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
|
||||
self.hidden_dropout = config.hidden_dropout
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
layer_past=None,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
use_cache=False,
|
||||
output_attentions=False,
|
||||
alibi=None,
|
||||
):
|
||||
# hidden_states: [batch_size, seq_length, hidden_size]
|
||||
|
||||
# Layer norm at the beginning of the transformer layer.
|
||||
layernorm_output = self.input_layernorm(hidden_states)
|
||||
|
||||
# Layer norm post the self attention.
|
||||
if self.apply_residual_connection_post_layernorm:
|
||||
residual = layernorm_output
|
||||
else:
|
||||
residual = hidden_states
|
||||
|
||||
# Self attention.
|
||||
attn_outputs = self.self_attention(
|
||||
layernorm_output,
|
||||
residual,
|
||||
layer_past=layer_past,
|
||||
attention_mask=attention_mask,
|
||||
alibi=alibi,
|
||||
head_mask=head_mask,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
attention_output = attn_outputs[0]
|
||||
|
||||
outputs = attn_outputs[1:]
|
||||
|
||||
layernorm_output = self.post_attention_layernorm(attention_output)
|
||||
|
||||
# Get residual
|
||||
if self.apply_residual_connection_post_layernorm:
|
||||
residual = layernorm_output
|
||||
else:
|
||||
residual = attention_output
|
||||
|
||||
# MLP.
|
||||
output = self.mlp(layernorm_output, residual)
|
||||
|
||||
if use_cache:
|
||||
outputs = (output,) + outputs
|
||||
else:
|
||||
outputs = (output,) + outputs[1:]
|
||||
|
||||
return outputs # hidden_states, present, attentions
|
418
src/model.py
Normal file
418
src/model.py
Normal file
@ -0,0 +1,418 @@
|
||||
"""PyTorch BLOOM model ."""
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import CrossEntropyLoss, LayerNorm
|
||||
|
||||
from transformers.file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.utils import logging
|
||||
from transformers.models.bloom.configuration_bloom import BloomConfig
|
||||
|
||||
from src.layer import BloomBlock
|
||||
from src.ops import build_alibi_tensor
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
_CHECKPOINT_FOR_DOC = "bigscience/Bloom"
|
||||
_CONFIG_FOR_DOC = "BloomConfig"
|
||||
_TOKENIZER_FOR_DOC = "BloomTokenizer"
|
||||
|
||||
|
||||
class BloomPreTrainedModel(PreTrainedModel):
|
||||
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = BloomConfig
|
||||
base_model_prefix = "transformer"
|
||||
supports_gradient_checkpointing = True
|
||||
_no_split_modules = ["BloomBlock"]
|
||||
|
||||
def __init__(self, *inputs, **kwargs):
|
||||
super().__init__(*inputs, **kwargs)
|
||||
|
||||
def _init_weights(self, module):
|
||||
"""Initialize the weights."""
|
||||
if isinstance(module, (nn.Linear)):
|
||||
# Slightly different from the TF version which uses truncated_normal for initialization
|
||||
# cf https://github.com/pytorch/pytorch/pull/5617
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
elif isinstance(module, nn.Embedding):
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
elif isinstance(module, LayerNorm):
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
if isinstance(module, BloomModel):
|
||||
module.gradient_checkpointing = value
|
||||
|
||||
|
||||
BLOOM_START_DOCSTRING = r"""
|
||||
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`BloomConfig`]): Model configuration class with all the parameters of the model.
|
||||
Initializing with a config file does not load the weights associated with the model, only the
|
||||
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
BLOOM_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
||||
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
||||
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
||||
sequence tokens in the vocabulary.
|
||||
|
||||
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
||||
`input_ids`.
|
||||
|
||||
Indices can be obtained using [`BloomTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
|
||||
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
||||
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
||||
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
||||
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||||
config.max_position_embeddings - 1]`.
|
||||
|
||||
[What are position IDs?](../glossary#position-ids)
|
||||
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
||||
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||||
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||||
model's internal embedding lookup matrix.
|
||||
|
||||
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
||||
`past_key_values`).
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.",
|
||||
BLOOM_START_DOCSTRING,
|
||||
)
|
||||
class BloomModel(BloomPreTrainedModel):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
|
||||
self.embed_dim = config.hidden_size
|
||||
self.n_head = config.n_head
|
||||
|
||||
# Embedding + LN Embedding
|
||||
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
|
||||
|
||||
self.word_embeddings_layernorm = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
||||
|
||||
# Transformer blocks
|
||||
self.h = nn.ModuleList([BloomBlock(config, layer_number=i) for i in range(config.num_hidden_layers)])
|
||||
|
||||
# Final Layer Norm
|
||||
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.word_embeddings
|
||||
|
||||
def set_input_embeddings(self, new_embeddings):
|
||||
self.word_embeddings = new_embeddings
|
||||
|
||||
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
|
||||
@add_code_sample_docstrings(
|
||||
processor_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
past_key_values=None,
|
||||
attention_mask=None,
|
||||
position_ids=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
input_ids = input_ids.view(-1, input_shape[-1])
|
||||
elif inputs_embeds is not None:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
if past_key_values is None:
|
||||
past_key_values = tuple([None] * len(self.h))
|
||||
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape bsz x n_head x N x N
|
||||
# head_mask has shape n_layer x batch x n_head x N x N
|
||||
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.word_embeddings(input_ids)
|
||||
|
||||
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
||||
|
||||
output_shape = input_shape + (hidden_states.size(-1),)
|
||||
|
||||
presents = () if use_cache else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
|
||||
# Compute alibi tensor: check build_alibi_tensor documentation
|
||||
current_sequence_length = hidden_states.shape[1]
|
||||
if past_key_values[0] is not None:
|
||||
current_sequence_length += past_key_values[0][0].shape[1]
|
||||
alibi = build_alibi_tensor(current_sequence_length, self.n_head, hidden_states.dtype)
|
||||
|
||||
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
||||
if use_cache:
|
||||
logger.warning(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
# None for past_key_value
|
||||
return module(*inputs, use_cache, output_attentions, alibi)
|
||||
|
||||
return custom_forward
|
||||
|
||||
outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
None,
|
||||
attention_mask,
|
||||
head_mask[i],
|
||||
)
|
||||
else:
|
||||
outputs = block(
|
||||
hidden_states,
|
||||
layer_past=layer_past,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask[i],
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
alibi=alibi,
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
if use_cache is True:
|
||||
presents = presents + (outputs[1],)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
||||
|
||||
# Add last hidden state
|
||||
hidden_states = self.ln_f(hidden_states)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
hidden_states = hidden_states.view(output_shape)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
||||
|
||||
return BaseModelOutputWithPastAndCrossAttentions(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=presents,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
)
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"""
|
||||
The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
||||
embeddings).
|
||||
""",
|
||||
BLOOM_START_DOCSTRING,
|
||||
)
|
||||
class BloomForCausalLM(BloomPreTrainedModel):
|
||||
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.transformer = BloomModel(config)
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
||||
# only last token for inputs_ids if past is defined in kwargs
|
||||
if past:
|
||||
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||||
|
||||
attention_mask = kwargs.get("attention_mask", None)
|
||||
position_ids = kwargs.get("position_ids", None)
|
||||
|
||||
if attention_mask is not None and position_ids is None:
|
||||
# create position_ids on the fly for batch generation
|
||||
position_ids = attention_mask.long().cumsum(-1) - 1
|
||||
position_ids.masked_fill_(attention_mask == 0, 1)
|
||||
if past:
|
||||
position_ids = position_ids[:, -1].unsqueeze(-1)
|
||||
else:
|
||||
position_ids = None
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"past_key_values": past,
|
||||
"use_cache": kwargs.get("use_cache"),
|
||||
"position_ids": position_ids,
|
||||
"attention_mask": attention_mask,
|
||||
}
|
||||
|
||||
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
|
||||
@add_code_sample_docstrings(
|
||||
processor_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
output_type=CausalLMOutputWithCrossAttentions,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
past_key_values=None,
|
||||
attention_mask=None,
|
||||
position_ids=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
labels=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
||||
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
||||
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
transformer_outputs = self.transformer(
|
||||
input_ids,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
hidden_states = transformer_outputs[0]
|
||||
|
||||
lm_logits = self.lm_head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = lm_logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
||||
|
||||
if not return_dict:
|
||||
output = (lm_logits,) + transformer_outputs[1:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithCrossAttentions(
|
||||
loss=loss,
|
||||
logits=lm_logits,
|
||||
past_key_values=transformer_outputs.past_key_values,
|
||||
hidden_states=transformer_outputs.hidden_states,
|
||||
attentions=transformer_outputs.attentions,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
||||
"""
|
||||
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
||||
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
||||
beam_idx at every generation step.
|
||||
"""
|
||||
return tuple(
|
||||
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
||||
for layer_past in past
|
||||
)
|
268
src/ops.py
Normal file
268
src/ops.py
Normal file
@ -0,0 +1,268 @@
|
||||
"""
|
||||
Utility operations used in the the BLOOM model
|
||||
Based on https://github.com/huggingface/transformers/commit/ca2a55e9dfb245527b5e1c954fec6ffbb7aef07b
|
||||
"""
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.autograd
|
||||
from torch import nn
|
||||
|
||||
|
||||
def split_tensor_along_last_dim(tensor, num_partitions, contiguous_split_chunks=False):
|
||||
"""Split a tensor along its last dimension.
|
||||
|
||||
Args:
|
||||
tensor: ([`torch.tensor`], *required*):
|
||||
input tensor to split
|
||||
num_partitions ([`int`], *required*):
|
||||
number of partitions to split the tensor
|
||||
contiguous_split_chunks ([`bool`], *optional*, default=`False`)::
|
||||
If True, make each chunk contiguous in memory.
|
||||
"""
|
||||
# Get the size and dimension.
|
||||
last_dim = tensor.dim() - 1
|
||||
numerator, denominator = tensor.size()[last_dim], num_partitions
|
||||
if not (numerator % denominator == 0):
|
||||
raise ValueError(f"{numerator} is not divisible by {denominator}")
|
||||
last_dim_size = numerator // denominator
|
||||
# Split.
|
||||
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
||||
# Note: torch.split does not create contiguous tensors by default.
|
||||
if contiguous_split_chunks:
|
||||
return tuple(chunk.contiguous() for chunk in tensor_list)
|
||||
|
||||
return tensor_list
|
||||
|
||||
|
||||
def attention_mask_func(attention_scores, attention_mask, causal_mask):
|
||||
if attention_mask.dtype == torch.bool:
|
||||
attention_mask_bool = ~attention_mask
|
||||
else:
|
||||
attention_mask_bool = (1 - attention_mask).bool()
|
||||
|
||||
query_length, key_length, n_heads = attention_scores.size(2), attention_scores.size(3), attention_scores.size(1)
|
||||
padded_causal_mask = (
|
||||
attention_mask_bool[:, None, key_length - query_length : key_length, None]
|
||||
+ ~causal_mask[:, :, key_length - query_length : key_length, :key_length]
|
||||
).bool()
|
||||
padded_causal_mask = padded_causal_mask + attention_mask_bool[:, None, None, :key_length].bool()
|
||||
# Make use of floats
|
||||
return (
|
||||
attention_scores.masked_fill_(padded_causal_mask.expand(-1, n_heads, -1, -1), -10000.0),
|
||||
padded_causal_mask,
|
||||
)
|
||||
|
||||
|
||||
def build_alibi_tensor(max_seq_len, n_head, dtype=torch.bfloat16):
|
||||
"""
|
||||
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
|
||||
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
|
||||
`softmax(l+a) = softmax(l)`. Based on
|
||||
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
|
||||
|
||||
Args:
|
||||
Returns tensor shaped (n_head, 1, max_seq_len)
|
||||
max_seq_len: (`int`, *required*):
|
||||
max sequence length
|
||||
n_head: (`int`, *required*):
|
||||
number of heads
|
||||
dtype: (`torch.dtype`, *optional*, default=`torch.bfloat16`):
|
||||
dtype of the output tensor
|
||||
"""
|
||||
|
||||
def get_slopes(n):
|
||||
def get_slopes_power_of_2(n):
|
||||
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
|
||||
ratio = start
|
||||
return [start * ratio**i for i in range(n)]
|
||||
|
||||
if math.log2(n).is_integer():
|
||||
return get_slopes_power_of_2(n)
|
||||
else:
|
||||
closest_power_of_2 = 2 ** math.floor(math.log2(n))
|
||||
return (
|
||||
get_slopes_power_of_2(closest_power_of_2)
|
||||
+ get_slopes(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
|
||||
)
|
||||
|
||||
slopes = torch.Tensor(get_slopes(n_head)).unsqueeze(1).unsqueeze(1)
|
||||
arange_tensor = torch.arange(max_seq_len).unsqueeze(0).unsqueeze(0)
|
||||
alibi = slopes * arange_tensor.expand(n_head, -1, -1)
|
||||
|
||||
alibi = alibi.to(dtype)
|
||||
|
||||
return alibi
|
||||
|
||||
|
||||
def pre_process_alibi_for_pad(alibi, attention_mask, num_heads):
|
||||
"""
|
||||
Args:
|
||||
Pre-process the alibi tensor for padding.
|
||||
alibi: ([`torch.tensor`], *required*):
|
||||
alibi tensor to pre-process
|
||||
attention_mask: ([`torch.tensor`], *required*):
|
||||
attention mask to pre-process"""
|
||||
|
||||
# Sanity check if we are not inferring less tokens than the total sequence length
|
||||
# This usually happens when the inference is done with past_key_values
|
||||
# In this case we re-create the alibi tensor with the correct sequence length
|
||||
if attention_mask.shape[-1] != alibi.shape[-1]:
|
||||
alibi = build_alibi_tensor(attention_mask.shape[-1], num_heads, alibi.dtype).repeat(
|
||||
attention_mask.shape[0], 1, 1
|
||||
)
|
||||
# Get the indexes of the padding tokens
|
||||
index_x0, index_y0 = torch.where(attention_mask == 0.0)
|
||||
index_x1, index_y1 = torch.where(attention_mask == 1.0)
|
||||
|
||||
# Clone the embeddings - we can detach because the embeddings are not learned
|
||||
# Get a refence tensor
|
||||
slice_reference_alibi = build_alibi_tensor(alibi.shape[-1], num_heads, alibi.dtype)
|
||||
|
||||
# Loop over the batch where the padding is and replace the alibi tensor by the reference tensor
|
||||
# Only where you do not have padding. Replace padding tokens by zeros
|
||||
# This operation can be seen as a shifting operation.
|
||||
for i, index in enumerate(torch.unique(index_x0)):
|
||||
slice_to_modify = torch.zeros_like(slice_reference_alibi)
|
||||
index_shift = index_y1[index_x1 == index]
|
||||
shift_value = len(index_shift)
|
||||
slice_to_modify[:, :, index_shift] = slice_reference_alibi[:, :, :shift_value]
|
||||
alibi[index * num_heads : (index + 1) * num_heads] = slice_to_modify
|
||||
return alibi
|
||||
|
||||
|
||||
def dropout_add(x, residual, prob, training):
|
||||
"""
|
||||
Dropout add function
|
||||
|
||||
Args:
|
||||
x (`torch.tensor`, *required*):
|
||||
input tensor
|
||||
residual (`torch.tensor`, *rquired*):
|
||||
esidual tensor
|
||||
prob (`float`, *required*):
|
||||
dropout probability
|
||||
training (`bool`, *required*):
|
||||
training mode
|
||||
"""
|
||||
out = nn.functional.dropout(x, p=prob, training=training)
|
||||
out = residual + out
|
||||
return out
|
||||
|
||||
|
||||
def bloom_gelu_forward(x):
|
||||
"""
|
||||
Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to
|
||||
make the model jitable.
|
||||
|
||||
Args:
|
||||
x (`torch.tensor`, *required*):
|
||||
input hidden states
|
||||
"""
|
||||
return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
|
||||
|
||||
|
||||
def bloom_gelu_back(g, x):
|
||||
"""
|
||||
gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) +
|
||||
0.3989423 * x * torch.exp(-0.5 * x * x)
|
||||
|
||||
Args:
|
||||
g (`torch.tensor`, *required*):
|
||||
gradient output tensor
|
||||
x (`torch.tensor`, *required*):
|
||||
input tensor
|
||||
"""
|
||||
x = x[0] # x is a tuple of 1 element, needs to unpack it first
|
||||
tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
|
||||
# sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
|
||||
ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
|
||||
return ff * g
|
||||
|
||||
|
||||
class GeLUFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, input):
|
||||
ctx.save_for_backward(input)
|
||||
return bloom_gelu_forward(input)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
input = ctx.saved_tensors
|
||||
tmp = bloom_gelu_back(grad_output, input)
|
||||
return tmp
|
||||
|
||||
|
||||
class BloomGelu(nn.Module):
|
||||
"""
|
||||
BloomBiasGelu wrapper function that make use of the simple function on inference mode to make the model
|
||||
torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly
|
||||
copied from Megatron-DeepSpeed code and adapted for our needs
|
||||
|
||||
See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
if self.training:
|
||||
return GeLUFunction.apply(x)
|
||||
else:
|
||||
return bloom_gelu_forward(x)
|
||||
|
||||
|
||||
class BloomScaledSoftmax(nn.Module):
|
||||
"""
|
||||
fused operation: scaling + mask + softmax
|
||||
|
||||
Args:
|
||||
input_in_fp16 (`bool`, *required*):
|
||||
flag to indicate if input in fp16 data format.
|
||||
input_in_bf16 (`bool`, *required*):
|
||||
flag to indicate if input in bf16 data format.
|
||||
scaled_masked_softmax_fusion (`bool`, *required*):
|
||||
flag to indicate user want to use softmax fusion
|
||||
mask_func (`function`, *required*):
|
||||
mask function to be applied.
|
||||
softmax_in_fp32 (`bool`, *required*):
|
||||
if true, softmax in performed at fp32 precision.
|
||||
scale (`float`, *required*):
|
||||
scaling factor used in input tensor scaling.
|
||||
"""
|
||||
|
||||
def __init__(self, scaled_masked_softmax_fusion, mask_func, softmax_in_fp32, scale):
|
||||
super().__init__()
|
||||
self.scaled_masked_softmax_fusion = scaled_masked_softmax_fusion
|
||||
self.mask_func = mask_func
|
||||
self.softmax_in_fp32 = softmax_in_fp32
|
||||
self.scale = scale
|
||||
|
||||
if not (self.scale is None or softmax_in_fp32):
|
||||
raise ValueError("softmax should be in fp32 when scaled")
|
||||
|
||||
def forward(self, input, mask, max_positions):
|
||||
input_dtype = input.dtype
|
||||
input_in_16bit = input_dtype in [torch.float16, torch.bfloat16]
|
||||
softmax_dtype = torch.float32 if self.softmax_in_fp32 else input_dtype
|
||||
|
||||
if self.scale is not None:
|
||||
input = input * self.scale
|
||||
|
||||
if mask is not None:
|
||||
mask = mask.to(input.device)
|
||||
causal_mask = (
|
||||
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool))
|
||||
.view(1, 1, max_positions, max_positions)
|
||||
.to(input.device)
|
||||
)
|
||||
mask_output, padded_causal_mask = self.mask_func(input, mask, causal_mask)
|
||||
probs = nn.functional.softmax(mask_output, dim=-1, dtype=softmax_dtype) * (~padded_causal_mask)
|
||||
else:
|
||||
probs = nn.functional.softmax(input, dim=-1, dtype=softmax_dtype)
|
||||
|
||||
if input_in_16bit and self.softmax_in_fp32:
|
||||
probs = probs.to(dtype=input_dtype)
|
||||
|
||||
return probs
|
Loading…
Reference in New Issue
Block a user