mirror of
https://github.com/bigscience-workshop/petals
synced 2024-11-16 06:12:50 +00:00
undo rename
This commit is contained in:
parent
7ce7cd7a97
commit
1cca611c9f
@ -17,7 +17,7 @@ from src.server.cache import MemoryCache
|
||||
# - ensure that optimizer/scheduler is not created
|
||||
|
||||
|
||||
class TransformerBlockBackend(ExpertBackend):
|
||||
class BloomBlockBackend(ExpertBackend):
|
||||
"""A wrapper for BloomBlock that can process requests for bloom layer forward, forward_incremental, and backward"""
|
||||
def __init__(self, name: str, module: BloomBlock, *, memory_cache: MemoryCache, **kwargs):
|
||||
object().__init__() # to bypass super.__init__
|
||||
|
@ -4,20 +4,19 @@ from hivemind import P2PContext, DHT
|
||||
from hivemind.moe.server.connection_handler import ConnectionHandler
|
||||
from hivemind.proto import runtime_pb2
|
||||
|
||||
from src.bloom.block import BloomBlock
|
||||
|
||||
|
||||
class BloomConnectionHandler(ConnectionHandler):
|
||||
"""Handles three request types: forward, backward and forward-incremental (inference)"""
|
||||
|
||||
def __init__(self, dht: DHT, experts: Dict[str, BloomBackend]):
|
||||
super().__init__()
|
||||
self.dht, self.experts = dht, experts
|
||||
self._p2p: Optional[P2P] = None
|
||||
|
||||
self.ready = MPFuture()
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
async def rpc_forward_incremental(
|
||||
self, requests: AsyncIterator[runtime_pb2.ExpertRequest], context: P2PContext
|
||||
) -> AsyncIterator[runtime_pb2.ExpertRequest]:
|
||||
# note: you may use self.experts[uid].memory_cache!
|
||||
# encode expert_uid as @model_name[starting_layer:finishing_layer]
|
||||
# - while not closed: read input embeddings, check input shapes, run inference, return batch of outputs, repeat
|
||||
# - receive and maintain a handle for attention cache here
|
||||
|
@ -14,7 +14,7 @@ import multiprocessing as mp
|
||||
from src import DistributedBloomConfig
|
||||
from src.bloom.block import BloomBlock
|
||||
from src.server.cache import MemoryCache
|
||||
from src.server.backend import TransformerBlockBackend
|
||||
from src.server.backend import BloomBlockBackend
|
||||
from src.server.handler import BloomConnectionHandler
|
||||
|
||||
use_hivemind_log_handler("in_root_logger")
|
||||
@ -24,16 +24,14 @@ logger = get_logger(__file__)
|
||||
class Server(threading.Thread):
|
||||
"""Serves one or more bloom layers for inference, forward and backward; announces oneself to the DHT"""
|
||||
def __init__(
|
||||
self, dht: DHT, module_backends: Dict[str, TransformerBlockBackend], *,
|
||||
self, dht: DHT, module_backends: Dict[str, BloomBlockBackend], *,
|
||||
device: torch.device, num_connection_handlers: int = 8,
|
||||
update_period: float = 30, expiration: Optional[float] = None,
|
||||
start: bool, **kwargs
|
||||
):
|
||||
threading.Thread.__init__(self)
|
||||
self.dht, self.module_backends, self.update_period = dht, module_backends, update_period
|
||||
self.conn_handlers = [
|
||||
BloomConnectionHandler(dht, self.module_backends) for _ in range(num_connection_handlers)
|
||||
]
|
||||
self.conn_handlers = [BloomConnectionHandler(dht, self.module_backends) for _ in range(num_connection_handlers)]
|
||||
self.runtime = Runtime(self.module_backends, device=device, **kwargs)
|
||||
self.dht_handler_thread = DHTHandlerThread(self.module_backends, dht, update_period, expiration, daemon=True)
|
||||
self.checkpoint_saver = None # no need to save checkpoints since we do not change model state
|
||||
@ -102,16 +100,17 @@ class Server(threading.Thread):
|
||||
num_handlers = num_handlers if num_handlers is not None else num_blocks * 8
|
||||
device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
||||
block_config = DistributedBloomConfig.from_pretrained(block_config, use_auth_token=True)
|
||||
|
||||
memory_cache = MemoryCache(device, cache_size_bytes)
|
||||
# initialize modules
|
||||
blocks = {}
|
||||
for i in range(num_blocks):
|
||||
module_uid = f"dummy_block.{i}"
|
||||
HARDCODCED_LENGTH = 2048
|
||||
|
||||
blocks[module_uid] = TransformerBlockBackend(
|
||||
blocks[module_uid] = BloomBlockBackend(
|
||||
module_uid,
|
||||
BloomBlock(block_config, layer_number=i),
|
||||
memory_cache=memory_cache,
|
||||
args_schema=(BatchTensorDescriptor(1, HARDCODCED_LENGTH, block_config.hidden_size, compression=compression),),
|
||||
kwargs_schema={},
|
||||
outputs_schema=(BatchTensorDescriptor(1, HARDCODCED_LENGTH, block_config.hidden_size, compression=compression),),
|
||||
|
Loading…
Reference in New Issue
Block a user