2022-06-23 13:33:16 +00:00
|
|
|
######
|
|
|
|
# Warning:torch this test is a work in progress. It will be modified soon.
|
|
|
|
# - if you want more stable tests, see test_block_exact_match
|
|
|
|
# - if you want to figure out chained inference, ask yozh
|
|
|
|
|
|
|
|
import os
|
|
|
|
|
|
|
|
import hivemind
|
|
|
|
import torch
|
|
|
|
from hivemind.moe.expert_uid import ExpertInfo
|
|
|
|
|
|
|
|
from src.bloom.from_pretrained import load_pretrained_block
|
|
|
|
from src.client.remote_block import RemoteTransformerBlock
|
|
|
|
from src.dht_utils import get_remote_module
|
|
|
|
|
|
|
|
INITIAL_PEERS = os.environ.get("INITIAL_PEERS")
|
|
|
|
if not INITIAL_PEERS:
|
|
|
|
raise RuntimeError("Must specify INITIAL_PEERS environment variable with one or more peer ids")
|
|
|
|
INITIAL_PEERS = INITIAL_PEERS.split()
|
|
|
|
|
|
|
|
|
|
|
|
BLOCK_UID = os.environ.get("BLOCK_UID")
|
|
|
|
if not BLOCK_UID:
|
|
|
|
raise RuntimeError("Must specify BLOCK_UID as an index of a transformer block to be tested")
|
|
|
|
|
|
|
|
REF_NAME = os.environ.get("REF_NAME", "bigscience/test-bloomd-6b3")
|
|
|
|
REF_INDEX = int(os.environ.get("REF_INDEX", BLOCK_UID[-1].split(".")[-1]))
|
|
|
|
|
|
|
|
|
|
|
|
def test_remote_block_exact_match(atol_inference=1e-4):
|
|
|
|
dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
|
|
|
|
remote_block = get_remote_module(dht, BLOCK_UID)
|
|
|
|
assert remote_block is not None, f"Could not find {BLOCK_UID} in DHT"
|
|
|
|
assert isinstance(remote_block, RemoteTransformerBlock)
|
|
|
|
|
|
|
|
_ = remote_block.info # lazy-init info now, because otherwise we will _break_ info init by chaning _info
|
2022-06-28 10:16:03 +00:00
|
|
|
remote_block._info = ExpertInfo("bloom6b3.3 bloom6b3.4", remote_block._info.peer_id)
|
2022-06-23 13:33:16 +00:00
|
|
|
|
|
|
|
inputs = torch.randn(1, 8, 4096)
|
|
|
|
|
|
|
|
outputs_inference = []
|
|
|
|
with remote_block.begin_inference_session() as sess:
|
|
|
|
for i in range(inputs.shape[1]):
|
|
|
|
outputs_inference.append(sess.step(inputs[:, i : i + 1, :]))
|
|
|
|
outputs_inference = torch.cat(outputs_inference, dim=1)
|
|
|
|
|
|
|
|
ref_blocks = [
|
|
|
|
load_pretrained_block(REF_NAME, 3, torch_dtype=torch.float32),
|
2022-06-28 10:16:03 +00:00
|
|
|
load_pretrained_block(REF_NAME, 4, torch_dtype=torch.float32),
|
2022-06-23 13:33:16 +00:00
|
|
|
]
|
|
|
|
outputs_ref = []
|
|
|
|
caches = [None, None]
|
|
|
|
for i in range(inputs.shape[1]):
|
|
|
|
new_caches = []
|
|
|
|
hidden_states = inputs[:, i : i + 1, :]
|
|
|
|
for ref_block, cache in zip(ref_blocks, caches):
|
|
|
|
with torch.no_grad():
|
|
|
|
hidden_states, new_cache = ref_block.forward(hidden_states, use_cache=True, layer_past=cache)
|
|
|
|
new_caches.append(new_cache)
|
|
|
|
|
|
|
|
outputs_ref.append(hidden_states)
|
|
|
|
caches = new_caches
|
|
|
|
outputs_ref = torch.cat(outputs_ref, dim=1)
|
|
|
|
assert torch.allclose(outputs_ref, outputs_inference, rtol=0, atol=atol_inference)
|