mirror of
https://github.com/bigscience-workshop/petals
synced 2024-10-31 09:20:41 +00:00
129 lines
5.4 KiB
Python
129 lines
5.4 KiB
Python
|
from typing import Optional, Tuple
|
||
|
|
||
|
import pytest
|
||
|
import torch
|
||
|
from transformers.models.falcon.modeling_falcon import FalconDecoderLayer, FalconModel, build_alibi_tensor
|
||
|
|
||
|
from petals.utils.auto_config import AutoDistributedConfig
|
||
|
from petals.utils.convert_block import QuantType, convert_block
|
||
|
from test_utils import MODEL_NAME
|
||
|
|
||
|
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||
|
|
||
|
|
||
|
class UnoptimizedWrappedFalconBlock(FalconDecoderLayer):
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
*args,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
alibi: Optional[torch.Tensor] = None,
|
||
|
layer_past: Optional[KVCache] = None,
|
||
|
use_cache: bool = False,
|
||
|
**kwargs,
|
||
|
):
|
||
|
batch_size, seq_length = hidden_states.shape[:2]
|
||
|
|
||
|
if layer_past is not None:
|
||
|
layer_past = self._reorder_cache_from_bloom_to_falcon(layer_past)
|
||
|
past_length = 0 if layer_past is None else layer_past[0].shape[1]
|
||
|
seq_length_with_past = seq_length + past_length
|
||
|
|
||
|
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
||
|
if alibi is None and self.config.alibi:
|
||
|
alibi = build_alibi_tensor(attention_mask, num_heads=self.num_heads, dtype=hidden_states.dtype)
|
||
|
attention_mask = FalconModel._prepare_attn_mask(attention_mask, (batch_size, seq_length), past_length)
|
||
|
|
||
|
outputs = super().forward(
|
||
|
hidden_states,
|
||
|
*args,
|
||
|
attention_mask=attention_mask,
|
||
|
alibi=alibi,
|
||
|
layer_past=layer_past,
|
||
|
use_cache=use_cache,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
if use_cache:
|
||
|
present_key_value = outputs[-1]
|
||
|
present_key_value = self._reorder_cache_from_falcon_to_bloom(present_key_value)
|
||
|
outputs = outputs[:-1] + (present_key_value,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
def _reorder_cache_from_bloom_to_falcon(self, key_value: KVCache) -> KVCache:
|
||
|
key_states, value_states = key_value
|
||
|
|
||
|
key_states = key_states.permute(0, 2, 1)
|
||
|
assert key_states.shape == value_states.shape # Both are [batch_size * num_kv_heads, seq_len, head_dim]
|
||
|
|
||
|
if self.config.new_decoder_architecture:
|
||
|
key_states = self._expand_states(key_states)
|
||
|
value_states = self._expand_states(value_states)
|
||
|
|
||
|
return (key_states, value_states)
|
||
|
|
||
|
def _reorder_cache_from_falcon_to_bloom(self, key_value: KVCache) -> KVCache:
|
||
|
key_states, value_states = key_value
|
||
|
|
||
|
if self.config.new_decoder_architecture:
|
||
|
key_states = self._collapse_states(key_states)
|
||
|
value_states = self._collapse_states(value_states)
|
||
|
|
||
|
assert key_states.shape == value_states.shape # Both are [batch_size * num_kv_heads, seq_len, head_dim]
|
||
|
key_states = key_states.permute(0, 2, 1)
|
||
|
|
||
|
return (key_states, value_states)
|
||
|
|
||
|
def _expand_states(self, state: torch.Tensor) -> torch.Tensor:
|
||
|
batch_size_x_num_kv_heads, seq_len, head_dim = state.shape
|
||
|
batch_size = batch_size_x_num_kv_heads // self.config.num_kv_heads
|
||
|
|
||
|
state = state.view(batch_size, self.config.num_kv_heads, 1, seq_len, head_dim)
|
||
|
state = state.expand(-1, -1, self.config.num_key_value_groups, -1, -1) # No copy
|
||
|
state = state.reshape(batch_size * self.config.num_attention_heads, seq_len, head_dim) # Involves a copy
|
||
|
return state
|
||
|
|
||
|
def _collapse_states(self, state: torch.Tensor) -> torch.Tensor:
|
||
|
batch_size_x_num_attn_heads, seq_len, head_dim = state.shape
|
||
|
batch_size = batch_size_x_num_attn_heads // self.config.num_attention_heads
|
||
|
|
||
|
state = state.view(batch_size, self.config.num_kv_heads, self.config.num_key_value_groups, seq_len, head_dim)
|
||
|
state = state[:, :, 0]
|
||
|
state = state.view(batch_size * self.config.num_kv_heads, seq_len, head_dim)
|
||
|
return state
|
||
|
|
||
|
|
||
|
@pytest.mark.skipif("falcon" not in MODEL_NAME, reason="This test is applicable only to Falcon models")
|
||
|
@pytest.mark.parametrize("device", ["cpu", "cuda:0"])
|
||
|
@pytest.mark.forked
|
||
|
def test_falcon(device):
|
||
|
if device == "cuda:0" and not torch.cuda.is_available():
|
||
|
pytest.skip("CUDA tests can be run only in CUDA-enabled setups")
|
||
|
|
||
|
config = AutoDistributedConfig.from_pretrained(MODEL_NAME)
|
||
|
|
||
|
tensor_parallel_devices = (device,)
|
||
|
dtype = torch.bfloat16
|
||
|
quant_type = QuantType.NONE
|
||
|
|
||
|
block = config.block_class(config).to(dtype)
|
||
|
block = convert_block(block, 0, config, tensor_parallel_devices, device, quant_type=quant_type, freeze=True)
|
||
|
|
||
|
unopt_block = UnoptimizedWrappedFalconBlock(config).to(dtype)
|
||
|
unopt_block = convert_block(
|
||
|
unopt_block, 0, config, tensor_parallel_devices, device, quant_type=quant_type, freeze=True
|
||
|
)
|
||
|
|
||
|
unopt_block.load_state_dict(block.state_dict())
|
||
|
cache = unopt_cache = None
|
||
|
|
||
|
with torch.inference_mode():
|
||
|
for length in [10, 1, 1, 1]:
|
||
|
dummy_input = torch.randn(1, length, config.hidden_size, device=device, dtype=dtype)
|
||
|
block_output, cache = block(dummy_input, layer_past=cache, use_cache=True)
|
||
|
unopt_block_output, unopt_cache = unopt_block(dummy_input, layer_past=unopt_cache, use_cache=True)
|
||
|
assert torch.allclose(block_output, unopt_block_output, atol=1e-6, rtol=0), length
|
||
|
assert torch.allclose(cache[0], unopt_cache[0], atol=1e-6, rtol=0), length
|
||
|
assert torch.allclose(cache[1], unopt_cache[1], atol=1e-6, rtol=0), length
|