petals/tests/test_block_exact_match.py

44 lines
1.7 KiB
Python
Raw Normal View History

2022-06-20 13:50:12 +00:00
import os
import hivemind
import torch
from src.bloom.from_pretrained import load_pretrained_block
from src.client.remote_block import RemoteTransformerBlock
from src.dht_utils import get_remote_module
2022-06-20 13:50:12 +00:00
INITIAL_PEERS = os.environ.get("INITIAL_PEERS")
if not INITIAL_PEERS:
raise RuntimeError("Must specify INITIAL_PEERS environment variable with one or more peer ids")
INITIAL_PEERS = INITIAL_PEERS.split()
BLOCK_UID = os.environ.get("BLOCK_UID")
if not BLOCK_UID:
raise RuntimeError("Must specify BLOCK_UID as an index of a transformer block to be tested")
REF_NAME = os.environ.get("REF_NAME", "bigscience/test-bloomd-6b3")
REF_INDEX = int(os.environ.get("REF_INDEX", BLOCK_UID[-1].split(".")[-1]))
def test_remote_block_exact_match(atol_forward=1e-5, atol_inference=1e-3):
dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
remote_block = get_remote_module(dht, BLOCK_UID)
2022-06-20 13:50:12 +00:00
assert remote_block is not None, f"Could not find {BLOCK_UID} in DHT"
assert isinstance(remote_block, RemoteTransformerBlock)
inputs = torch.randn(1, 8, 4096)
(outputs_forward,) = remote_block(inputs)
outputs_inference = []
with remote_block.begin_inference_session() as sess:
for i in range(inputs.shape[1]):
outputs_inference.append(sess.step(inputs[:, i : i + 1, :]))
outputs_inference = torch.cat(outputs_inference, dim=1)
ref_block = load_pretrained_block(REF_NAME, REF_INDEX, torch_dtype=torch.float32)
(outputs_local,) = ref_block(inputs)
assert torch.allclose(outputs_local, outputs_forward, rtol=0, atol=atol_forward)
assert torch.allclose(outputs_local, outputs_inference, rtol=0, atol=atol_inference)