OPENPGP CARD APPLICATION
ADD-ON

LEDGER SAS

— 1

L

L

https:// github.com/LedgerH @/ app-openpgp

February 14, 2024

https://github.com/LedgerHQ/app-openpgp

Contents

1 License 1
2 Introduction 1
2.1 OpenPGP Card Application add-ons summary 1
2.1.1 Key management: e e e 1

2.1.2 KeysSlots o0 e 2

2.1.3 Random number generation L L Lo oL oo 2

214 KeyBackup 2

3 Ledger OpenPGP Application 2
3.1 How . . . o e 2
3.1.1 Deterministic key derivation L o oo o 2

3.1.2 Deterministic random numbero 3

3.1.3 Key Backup & Restore 4

3.2 APDU Modification e 4
3.2.1 Key Slot management oL 4

3.2.2 Deterministic key derivation oL oo o 5

3.2.3 Deterministic random numbero 5

3.3 Other minor add-on 5

1 License

Ledger App OpenPGP.
(c) 2024 Ledger SAS.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/ LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

2 Introduction

2.1 OpenPGP Card Application add-ons summary

2.1.1 Key management:

OpenPGP Application manage 4 keys to Perform Security Operation (PSO) plus 2 for secure channel.
The 4 keys are defined as follow:

o One asymmetric signature private key (RSA or EC), named ’sig’

o One asymmetric decryption private key (RSA or EC), named ’dec’

o One asymmetric authentication private key (RSA or EC), named ’aut’
e One symmetric decryption private key (AES), named ’sym(’

The 3 first asymmetric keys can be either randomly generated on-card or explicitly imported from outside.
The 4th is imported from outside.

It’s never possible to retrieve private key from the card.

This add-on specification propose a solution to derive those keys from the master seed managed by the
Ledger Token. This allows owner to restore a broken token without the needs to keep track of keys
outside the card.

Moreover this add-on specification propose to manage multiple set of the 4 previously described keys.

2.1.2 Keys Slots

To modify the keys slot, just select the corresponding menu from the screen.

Select slot

T8+

2.1.3 Random number generation
OpenPGP Application provides, as optional feature, to generate random bytes.
This add-on specification propose new type of random generation:

o random prime number generation
o seeded random number
e seeded prime number generation

2.1.4 Key Backup

A full key backup mechanism is provided.

3 Ledger OpenPGP Application
3.1 How

3.1.1 Deterministic key derivation

The deterministic key derivation process relies on the BIP32 scheme. The master install path of the
App is set to /0x80'GPG', aka /80475047.

Deterministic key derivation maybe activated in:
Settings -> Seed Mode -> Set on
This activation remains effective until set off is selected.

The key management remains the same if seed mode is on or off. So there is no performance impact
when using seeded keys.

Seeded keys are generated as follow:

Step 1:

For a given keys slot n, starting from 1, a seed is first derived with the following path
Sn = BIP32 derive (/0x80475047/n)

Step 2:

Then specific seeds are derived with the SHA3-XOF function for each of the 4 key:

Sk[i] = SHA3-XOF(SHA256(Sn \| <key_name> \| int16(i)), length)
Where:

e Sn is the dedicated slot seed from step 1.
e key_name is one of ’sig ’,’dec ’, 'aut ’, 'sym0’, each 4 characters.
e iis the index, starting from 1, of the desired seed (see below)

Step 3:
RSA key generation
Generate two seed Sp, Sq in step2 with:

o 1€ {1,2}
e length equals to half key size

Generate two prime numbers p, q:

e p = next_ prime(Sp)
e (= next_prime(Sq)

Generate RSA key pair as usual:

e choose e
e n = p¥*q
e d = inv(e) mod (p-1)(g-1)

ECC key generation
Generate one seed Sd in step2 with:

° i = 1
e length equals to curve size

Generate ECC key pair:

e d=15d
e W=4dG

AES key generation
Generate one seed Sd in step2 with:

3 i = 1
e length equals to 16

Generate AES key:
« k =Sk

3.1.2 Deterministic random number

The deterministic random number generation relies on the BIP32 scheme. The master install path of
the App is set to /0x80'GPG', aka /80475047.

Random prime number generation:
For a given length L:

o generate random number r of L bytes.
o generate rp = next_ prime(r)
e return rp

Seeded random number:
For a given length L and seed S:

o generate Sr = BIP32_ derive(/0x80475047/0x0FOFOFOF)
o generate r = SHA3-XOF(SHA256(Sr | 'tnd’ | S), L)

o returnr

Seeded prime number generation:
For a given length L and seed S:

o generate r as for "Seeded random number"
o generate rp = next_ prime(r)
e return rp

3.1.3 Key Backup & Restore

In order to backup/restore private key the commands put_ data and get_ data accept the tags:

o B6 (signature key)
o B8 (encryption key)
o A4 (authentication).

put_data command accept the exact output of get_data. The get_ data command return both the public
and private key.

For security and confidentiality, private key is returned encrypted in AES. The key used is derived
according to previously described AES key derivation with name ’key’.

The data payload is formatted as follow:

size Description

4 OS Target ID

4 APIT Level

4 compliance Level

4 public key size

var public key

4 private key size

var encrypted private key

3.2 APDU Modification

3.2.1 Key Slot management

Key slots are managed by data object 01F1 and 01F2 witch are manageable by PUT/GET DATA
command as for others DO and organized as follow.

On application reset, the 01F2 content is set to Default Slot value of 01F1.

01F1:
bytes Description R/W
1 Number of slot R
2 Default slot R/W
3 Allowed slot selection method R/W

Byte 3 is endoced as follow:

b8 b7 b6 b5 b4 b3 b2 bl Meaning
i - - - - - - X selection by APDU
- - - - - - X - selection by screen

01F2:

bytes Description R/W
1 Current slot R/W
01F0:
bytes Description R/W
1-3 01F1 content R
4 01F2 content R
Access Conditions:
DO Read Write
01F0 Always Never
01F1 Always Verify PW3
01F2 Always Verify PW2

3.2.2 Deterministic key derivation
P2 parameter of GENERATE ASYMMETRIC KEY PAIR is set to (hex value):
e 00 for true random key generation

e 01 for seeded random key

3.2.3 Deterministic random number

P1 parameter of GET CHALLENGE is a bit-field encoded as follow:

b8 b7 b6 b5 b4 b3 b2 bl Meaning
- - - . - - - X seeded random
- - - - - - X - prime random

When seeded mode is set, data field contains the seed and P2 contains the length of random bytes to
generate.

3.3 Other minor add-on

GnuPG use both fingerprints and serial number to identify key on card. So, the put_ data command is
able to modify the AID file with '4F’ tag. In that case the data field shall be 4 bytes length and shall
contain the new serial number. ’4F’ is protected by PW3 (admin) PIN.

	License
	Introduction
	OpenPGP Card Application add-ons summary
	Key management:
	Keys Slots
	Random number generation
	Key Backup

	Ledger OpenPGP Application
	How
	Deterministic key derivation
	Deterministic random number
	Key Backup & Restore

	APDU Modification
	Key Slot management
	Deterministic key derivation
	Deterministic random number

	Other minor add-on

