openai-cookbook/examples/vector_databases/redis/nbutils.py
2023-02-14 13:05:41 -08:00

46 lines
1.7 KiB
Python

import os
import wget
import zipfile
import numpy as np
import pandas as pd
from ast import literal_eval
def download_wikipedia_data(
data_path: str = '../../data/',
download_path: str = "./",
file_name: str = "vector_database_wikipedia_articles_embedded") -> pd.DataFrame:
data_url = 'https://cdn.openai.com/API/examples/data/vector_database_wikipedia_articles_embedded.zip'
csv_file_path = os.path.join(data_path, file_name + ".csv")
zip_file_path = os.path.join(download_path, file_name + ".zip")
if os.path.isfile(csv_file_path):
print("File Downloaded")
else:
if os.path.isfile(zip_file_path):
print("Zip downloaded but not unzipped, unzipping now...")
else:
print("File not found, downloading now...")
# Download the data
wget.download(data_url, out=download_path, bar=True)
# Unzip the data
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(data_path)
# Remove the zip file
os.remove('vector_database_wikipedia_articles_embedded.zip')
print(f"File downloaded to {data_path}")
def read_wikipedia_data(data_path: str = '../../data/', file_name: str = "vector_database_wikipedia_articles_embedded") -> pd.DataFrame:
csv_file_path = os.path.join(data_path, file_name + ".csv")
data = pd.read_csv(csv_file_path)
# Read vectors from strings back into a list
data['title_vector'] = data.title_vector.apply(literal_eval)
data['content_vector'] = data.content_vector.apply(literal_eval)
# Set vector_id to be a string
data['vector_id'] = data['vector_id'].apply(str)
return data