mirror of
https://github.com/openai/openai-cookbook
synced 2024-11-04 06:00:33 +00:00
429 lines
18 KiB
Python
429 lines
18 KiB
Python
"""
|
|
API REQUEST PARALLEL PROCESSOR
|
|
|
|
Using the OpenAI API to process lots of text quickly takes some care.
|
|
If you trickle in a million API requests one by one, they'll take days to complete.
|
|
If you flood a million API requests in parallel, they'll exceed the rate limits and fail with errors.
|
|
To maximize throughput, parallel requests need to be throttled to stay under rate limits.
|
|
|
|
This script parallelizes requests to the OpenAI API while throttling to stay under rate limits.
|
|
|
|
Features:
|
|
- Streams requests from file, to avoid running out of memory for giant jobs
|
|
- Makes requests concurrently, to maximize throughput
|
|
- Throttles request and token usage, to stay under rate limits
|
|
- Retries failed requests up to {max_attempts} times, to avoid missing data
|
|
- Logs errors, to diagnose problems with requests
|
|
|
|
Example command to call script:
|
|
```
|
|
python examples/api_request_parallel_processor.py \
|
|
--requests_filepath examples/data/example_requests_to_parallel_process.jsonl \
|
|
--save_filepath examples/data/example_requests_to_parallel_process_results.jsonl \
|
|
--request_url https://api.openai.com/v1/embeddings \
|
|
--max_requests_per_minute 1500 \
|
|
--max_tokens_per_minute 6250000 \
|
|
--token_encoding_name cl100k_base \
|
|
--max_attempts 5 \
|
|
--logging_level 20
|
|
```
|
|
|
|
Inputs:
|
|
- requests_filepath : str
|
|
- path to the file containing the requests to be processed
|
|
- file should be a jsonl file, where each line is a json object with API parameters
|
|
- e.g., {"model": "text-embedding-ada-002", "input": "embed me"}
|
|
- as with all jsonl files, take care that newlines in the content are properly escaped (json.dumps does this automatically)
|
|
- an example file is provided at examples/data/example_requests_to_parallel_process.jsonl
|
|
- the code to generate the example file is appended to the bottom of this script
|
|
- save_filepath : str, optional
|
|
- path to the file where the results will be saved
|
|
- file will be a jsonl file, where each line is an array with the original request plus the API response
|
|
- e.g., [{"model": "text-embedding-ada-002", "input": "embed me"}, {...}]
|
|
- if omitted, results will be saved to {requests_filename}_results.jsonl
|
|
- request_url : str, optional
|
|
- URL of the API endpoint to call
|
|
- if omitted, will default to "https://api.openai.com/v1/embeddings"
|
|
- api_key : str, optional
|
|
- API key to use
|
|
- if omitted, the script will attempt to read it from an environment variable {os.getenv("OPENAI_API_KEY")}
|
|
- max_requests_per_minute : float, optional
|
|
- target number of requests to make per minute (will make less if limited by tokens)
|
|
- leave headroom by setting this to 50% or 75% of your limit
|
|
- if requests are limiting you, try batching multiple embeddings or completions into one request
|
|
- if omitted, will default to 1,500
|
|
- max_tokens_per_minute : float, optional
|
|
- target number of tokens to use per minute (will use less if limited by requests)
|
|
- leave headroom by setting this to 50% or 75% of your limit
|
|
- if omitted, will default to 125,000
|
|
- token_encoding_name : str, optional
|
|
- name of the token encoding used, as defined in the `tiktoken` package
|
|
- if omitted, will default to "cl100k_base" (used by `text-embedding-ada-002`)
|
|
- max_attempts : int, optional
|
|
- number of times to retry a failed request before giving up
|
|
- if omitted, will default to 5
|
|
- logging_level : int, optional
|
|
- level of logging to use; higher numbers will log fewer messages
|
|
- 40 = ERROR; will log only when requests fail after all retries
|
|
- 30 = WARNING; will log when requests his rate limits or other errors
|
|
- 20 = INFO; will log when requests start and the status at finish
|
|
- 10 = DEBUG; will log various things as the loop runs to see when they occur
|
|
- if omitted, will default to 20 (INFO).
|
|
|
|
The script is structured as follows:
|
|
- Imports
|
|
- Define main()
|
|
- Initialize things
|
|
- In main loop:
|
|
- Get next request if one is not already waiting for capacity
|
|
- Update available token & request capacity
|
|
- If enough capacity available, call API
|
|
- The loop pauses if a rate limit error is hit
|
|
- The loop breaks when no tasks remain
|
|
- Define dataclasses
|
|
- StatusTracker (stores script metadata counters; only one instance is created)
|
|
- APIRequest (stores API inputs, outputs, metadata; one method to call API)
|
|
- Define functions
|
|
- api_endpoint_from_url (extracts API endpoint from request URL)
|
|
- append_to_jsonl (writes to results file)
|
|
- num_tokens_consumed_from_request (bigger function to infer token usage from request)
|
|
- task_id_generator_function (yields 1, 2, 3, ...)
|
|
- Run main()
|
|
"""
|
|
|
|
# imports
|
|
import aiohttp # for making API calls concurrently
|
|
import argparse # for running script from command line
|
|
import asyncio # for running API calls concurrently
|
|
import json # for saving results to a jsonl file
|
|
import logging # for logging rate limit warnings and other messages
|
|
import os # for reading API key
|
|
import tiktoken # for counting tokens
|
|
import time # for sleeping after rate limit is hit
|
|
from dataclasses import dataclass # for storing API inputs, outputs, and metadata
|
|
|
|
|
|
async def process_api_requests_from_file(
|
|
requests_filepath: str,
|
|
save_filepath: str,
|
|
request_url: str,
|
|
api_key: str,
|
|
max_requests_per_minute: float,
|
|
max_tokens_per_minute: float,
|
|
token_encoding_name: str,
|
|
max_attempts: int,
|
|
logging_level: int,
|
|
):
|
|
"""Processes API requests in parallel, throttling to stay under rate limits."""
|
|
# constants
|
|
seconds_to_pause_after_rate_limit_error = 15
|
|
seconds_to_sleep_each_loop = 0.001 # 1 ms limits max throughput to 1,000 requests per second
|
|
|
|
# initialize logging
|
|
logging.basicConfig(level=logging_level)
|
|
logging.debug(f"Logging initialized at level {logging_level}")
|
|
|
|
# infer API endpoint and construct request header
|
|
api_endpoint = api_endpoint_from_url(request_url)
|
|
request_header = {"Authorization": f"Bearer {api_key}"}
|
|
|
|
# initialize trackers
|
|
queue_of_requests_to_retry = asyncio.Queue()
|
|
task_id_generator = task_id_generator_function() # generates integer IDs of 1, 2, 3, ...
|
|
status_tracker = StatusTracker() # single instance to track a collection of variables
|
|
next_request = None # variable to hold the next request to call
|
|
|
|
# initialize available capacity counts
|
|
available_request_capacity = max_requests_per_minute
|
|
available_token_capacity = max_tokens_per_minute
|
|
last_update_time = time.time()
|
|
|
|
# intialize flags
|
|
file_not_finished = True # after file is empty, we'll skip reading it
|
|
logging.debug(f"Initialization complete.")
|
|
|
|
# initialize file reading
|
|
with open(requests_filepath) as file:
|
|
# `requests` will provide requests one at a time
|
|
requests = file.__iter__()
|
|
logging.debug(f"File opened. Entering main loop")
|
|
|
|
while True:
|
|
# get next request (if one is not already waiting for capacity)
|
|
if next_request is None:
|
|
if queue_of_requests_to_retry.empty() is False:
|
|
next_request = queue_of_requests_to_retry.get_nowait()
|
|
logging.debug(f"Retrying request {next_request.task_id}: {next_request}")
|
|
elif file_not_finished:
|
|
try:
|
|
# get new request
|
|
request_json = eval(next(requests))
|
|
next_request = APIRequest(
|
|
task_id=next(task_id_generator),
|
|
request_json=request_json,
|
|
token_consumption=num_tokens_consumed_from_request(request_json, api_endpoint, token_encoding_name),
|
|
attempts_left=max_attempts,
|
|
)
|
|
status_tracker.num_tasks_started += 1
|
|
status_tracker.num_tasks_in_progress += 1
|
|
logging.debug(f"Reading request {next_request.task_id}: {next_request}")
|
|
except StopIteration:
|
|
# if file runs out, set flag to stop reading it
|
|
logging.debug("Read file exhausted")
|
|
file_not_finished = False
|
|
|
|
# update available capacity
|
|
current_time = time.time()
|
|
seconds_since_update = current_time - last_update_time
|
|
available_request_capacity = min(
|
|
available_request_capacity + max_requests_per_minute * seconds_since_update / 60.0,
|
|
max_requests_per_minute,
|
|
)
|
|
available_token_capacity = min(
|
|
available_token_capacity + max_tokens_per_minute * seconds_since_update / 60.0,
|
|
max_tokens_per_minute,
|
|
)
|
|
last_update_time = current_time
|
|
|
|
# if enough capacity available, call API
|
|
if next_request:
|
|
next_request_tokens = next_request.token_consumption
|
|
if (
|
|
available_request_capacity >= 1
|
|
and available_token_capacity >= next_request_tokens
|
|
):
|
|
# update counters
|
|
available_request_capacity -= 1
|
|
available_token_capacity -= next_request_tokens
|
|
next_request.attempts_left -= 1
|
|
|
|
# call API
|
|
asyncio.create_task(
|
|
next_request.call_API(
|
|
request_url=request_url,
|
|
request_header=request_header,
|
|
retry_queue=queue_of_requests_to_retry,
|
|
save_filepath=save_filepath,
|
|
status_tracker=status_tracker,
|
|
)
|
|
)
|
|
next_request = None # reset next_request to empty
|
|
|
|
# if all tasks are finished, break
|
|
if status_tracker.num_tasks_in_progress == 0:
|
|
break
|
|
|
|
# main loop sleeps briefly so concurrent tasks can run
|
|
await asyncio.sleep(seconds_to_sleep_each_loop)
|
|
|
|
# if a rate limit error was hit recently, pause to cool down
|
|
seconds_since_rate_limit_error = (time.time() - status_tracker.time_of_last_rate_limit_error)
|
|
if seconds_since_rate_limit_error < seconds_to_pause_after_rate_limit_error:
|
|
remaining_seconds_to_pause = (seconds_to_pause_after_rate_limit_error - seconds_since_rate_limit_error)
|
|
await asyncio.sleep(remaining_seconds_to_pause)
|
|
# ^e.g., if pause is 15 seconds and final limit was hit 5 seconds ago
|
|
logging.warn(f"Pausing to cool down until {time.ctime(status_tracker.time_of_last_rate_limit_error + seconds_to_pause_after_rate_limit_error)}")
|
|
|
|
# after finishing, log final status
|
|
logging.info(f"""Parallel processing complete. Results saved to {save_filepath}""")
|
|
if status_tracker.num_tasks_failed > 0:
|
|
logging.warning(f"{status_tracker.num_tasks_failed} / {status_tracker.num_tasks_started} requests failed. Errors logged to {save_filepath}.")
|
|
if status_tracker.num_rate_limit_errors > 0:
|
|
logging.warning(f"{status_tracker.num_rate_limit_errors} rate limit errors received. Consider running at a lower rate.")
|
|
|
|
|
|
# dataclasses
|
|
|
|
|
|
@dataclass
|
|
class StatusTracker:
|
|
"""Stores metadata about the script's progress. Only one instance is created."""
|
|
|
|
num_tasks_started: int = 0
|
|
num_tasks_in_progress: int = 0 # script ends when this reaches 0
|
|
num_tasks_succeeded: int = 0
|
|
num_tasks_failed: int = 0
|
|
num_rate_limit_errors: int = 0
|
|
num_api_errors: int = 0 # excluding rate limit errors, counted above
|
|
num_other_errors: int = 0
|
|
time_of_last_rate_limit_error: int = 0 # used to cool off after hitting rate limits
|
|
|
|
|
|
@dataclass
|
|
class APIRequest:
|
|
"""Stores an API request's inputs, outputs, and other metadata. Contains a method to make an API call."""
|
|
|
|
task_id: int
|
|
request_json: dict
|
|
token_consumption: int
|
|
attempts_left: int
|
|
result = []
|
|
|
|
async def call_API(
|
|
self,
|
|
request_url: str,
|
|
request_header: dict,
|
|
retry_queue: asyncio.Queue,
|
|
save_filepath: str,
|
|
status_tracker: StatusTracker,
|
|
):
|
|
"""Calls the OpenAI API and saves results."""
|
|
logging.info(f"Starting request #{self.task_id}")
|
|
error = None
|
|
try:
|
|
async with aiohttp.ClientSession() as session:
|
|
async with session.post(
|
|
url=request_url, headers=request_header, json=self.request_json
|
|
) as response:
|
|
response = await response.json()
|
|
if "error" in response:
|
|
logging.warning(
|
|
f"Request {self.task_id} failed with error {response['error']}"
|
|
)
|
|
status_tracker.num_api_errors += 1
|
|
error = response
|
|
if "Rate limit" in response["error"].get("message", ""):
|
|
status_tracker.time_of_last_rate_limit_error = time.time()
|
|
status_tracker.num_rate_limit_errors += 1
|
|
status_tracker.num_api_errors -= 1 # rate limit errors are counted separately
|
|
|
|
except Exception as e: # catching naked exceptions is bad practice, but in this case we'll log & save them
|
|
logging.warning(f"Request {self.task_id} failed with Exception {e}")
|
|
status_tracker.num_other_errors += 1
|
|
error = e
|
|
if error:
|
|
self.result.append(error)
|
|
if self.attempts_left:
|
|
retry_queue.put_nowait(self)
|
|
else:
|
|
logging.error(f"Request {self.request_json} failed after all attempts. Saving errors: {self.result}")
|
|
append_to_jsonl([self.request_json, self.result], save_filepath)
|
|
status_tracker.num_tasks_in_progress -= 1
|
|
status_tracker.num_tasks_failed += 1
|
|
else:
|
|
append_to_jsonl([self.request_json, response], save_filepath)
|
|
status_tracker.num_tasks_in_progress -= 1
|
|
status_tracker.num_tasks_succeeded += 1
|
|
logging.debug(f"Request {self.task_id} saved to {save_filepath}")
|
|
|
|
|
|
# functions
|
|
|
|
|
|
def api_endpoint_from_url(request_url):
|
|
"""Extract the API endpoint from the request URL."""
|
|
return request_url.split("/")[-1]
|
|
|
|
|
|
def append_to_jsonl(data, filename: str) -> None:
|
|
"""Append a json payload to the end of a jsonl file."""
|
|
json_string = json.dumps(data)
|
|
with open(filename, "a") as f:
|
|
f.write(json_string + "\n")
|
|
|
|
|
|
def num_tokens_consumed_from_request(
|
|
request_json: dict,
|
|
api_endpoint: str,
|
|
token_encoding_name: str,
|
|
):
|
|
"""Count the number of tokens in the request. Only supports completion and embedding requests."""
|
|
encoding = tiktoken.get_encoding(token_encoding_name)
|
|
# if completions request, tokens = prompt + n * max_tokens
|
|
if api_endpoint == "completions":
|
|
prompt = request_json["prompt"]
|
|
max_tokens = request_json.get("max_tokens", 15)
|
|
n = request_json.get("n", 1)
|
|
completion_tokens = n * max_tokens
|
|
if isinstance(prompt, str): # single prompt
|
|
prompt_tokens = len(encoding.encode(prompt))
|
|
num_tokens = prompt_tokens + completion_tokens
|
|
return num_tokens
|
|
elif isinstance(prompt, list): # multiple prompts
|
|
prompt_tokens = sum([len(encoding.encode(p)) for p in prompt])
|
|
num_tokens = prompt_tokens + completion_tokens
|
|
return num_tokens
|
|
else:
|
|
raise TypeError('Expecting either string or list of strings for "prompt" field in completion request')
|
|
# if embeddings request, tokens = input tokens
|
|
elif api_endpoint == "embeddings":
|
|
input = request_json["input"]
|
|
if isinstance(input, str): # single input
|
|
num_tokens = len(encoding.encode(input))
|
|
return num_tokens
|
|
elif isinstance(input, list): # multiple inputs
|
|
num_tokens = sum([len(encoding.encode(i)) for i in input])
|
|
return num_tokens
|
|
else:
|
|
raise TypeError('Expecting either string or list of strings for "inputs" field in embedding request')
|
|
# more logic needed to support other API calls (e.g., edits, inserts, DALL-E)
|
|
else:
|
|
raise NotImplementedError(f'API endpoint "{api_endpoint}" not implemented in this script')
|
|
|
|
|
|
def task_id_generator_function():
|
|
"""Generate integers 0, 1, 2, and so on."""
|
|
task_id = 0
|
|
while True:
|
|
yield task_id
|
|
task_id += 1
|
|
|
|
|
|
# run script
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# parse command line arguments
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--requests_filepath")
|
|
parser.add_argument("--save_filepath", default=None)
|
|
parser.add_argument("--request_url", default="https://api.openai.com/v1/embeddings")
|
|
parser.add_argument("--api_key", default=os.getenv("OPENAI_API_KEY"))
|
|
parser.add_argument("--max_requests_per_minute", type=int, default=3_000 * 0.5)
|
|
parser.add_argument("--max_tokens_per_minute", type=int, default=250_000 * 0.5)
|
|
parser.add_argument("--token_encoding_name", default="cl100k_base")
|
|
parser.add_argument("--max_attempts", type=int, default=5)
|
|
parser.add_argument("--logging_level", default=logging.INFO)
|
|
args = parser.parse_args()
|
|
|
|
if args.save_filepath is None:
|
|
args.save_filepath = args.requests_filepath.replace(".jsonl", "_results.jsonl")
|
|
|
|
# run script
|
|
asyncio.run(
|
|
process_api_requests_from_file(
|
|
requests_filepath=args.requests_filepath,
|
|
save_filepath=args.save_filepath,
|
|
request_url=args.request_url,
|
|
api_key=args.api_key,
|
|
max_requests_per_minute=float(args.max_requests_per_minute),
|
|
max_tokens_per_minute=float(args.max_tokens_per_minute),
|
|
token_encoding_name=args.token_encoding_name,
|
|
max_attempts=int(args.max_attempts),
|
|
logging_level=int(args.logging_level),
|
|
)
|
|
)
|
|
|
|
|
|
"""
|
|
APPENDIX
|
|
|
|
The example requests file at openai-cookbook/examples/data/example_requests_to_parallel_process.jsonl contains 10,000 requests to text-embedding-ada-002.
|
|
|
|
It was generated with the following code:
|
|
|
|
```python
|
|
import json
|
|
|
|
filename = "data/example_requests_to_parallel_process.jsonl"
|
|
n_requests = 10_000
|
|
jobs = [{"model": "text-embedding-ada-002", "input": str(x) + "\n"} for x in range(n_requests)]
|
|
with open(filename, "w") as f:
|
|
for job in jobs:
|
|
json_string = json.dumps(job)
|
|
f.write(json_string + "\n")
|
|
```
|
|
|
|
As with all jsonl files, take care that newlines in the content are properly escaped (json.dumps does this automatically).
|
|
"""
|