mirror of
https://github.com/openai/openai-cookbook
synced 2024-11-09 19:10:56 +00:00
251 lines
7.1 KiB
Plaintext
251 lines
7.1 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Azure embeddings example\n",
|
|
"In this example we'll try to go over all operations for embeddings that can be done using the Azure endpoints. \\\n",
|
|
"This example focuses on embeddings but also touches some other operations that are also available using the API. This example is meant to be a quick way of showing simple operations and is not meant as a tutorial."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import openai\n",
|
|
"from openai import cli"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Setup\n",
|
|
"For the following sections to work properly we first have to setup some things. Let's start with the `api_base` and `api_version`. To find your `api_base` go to https://portal.azure.com, find your resource and then under \"Resource Management\" -> \"Keys and Endpoints\" look for the \"Endpoint\" value."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"openai.api_version = '2022-12-01'\n",
|
|
"openai.api_base = '' # Please add your endpoint here"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"We next have to setup the `api_type` and `api_key`. We can either get the key from the portal or we can get it through Microsoft Active Directory Authentication. Depending on this the `api_type` is either `azure` or `azure_ad`."
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Setup: Portal\n",
|
|
"Let's first look at getting the key from the portal. Go to https://portal.azure.com, find your resource and then under \"Resource Management\" -> \"Keys and Endpoints\" look for one of the \"Keys\" values."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"openai.api_type = 'azure'\n",
|
|
"openai.api_key = '' # Please add your api key here"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### (Optional) Setup: Microsoft Active Directory Authentication\n",
|
|
"Let's now see how we can get a key via Microsoft Active Directory Authentication. Uncomment the following code if you want to use Active Directory Authentication instead of keys from the portal."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# from azure.identity import DefaultAzureCredential\n",
|
|
"\n",
|
|
"# default_credential = DefaultAzureCredential()\n",
|
|
"# token = default_credential.get_token(\"https://cognitiveservices.azure.com/.default\")\n",
|
|
"\n",
|
|
"# openai.api_type = 'azure_ad'\n",
|
|
"# openai.api_key = token.token"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Deployments\n",
|
|
"In this section we are going to create a deployment that we can use to create embeddings."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Deployments: Create manually\n",
|
|
"Let's create a deployment using the `text-similarity-curie-001` model. Create a new deployment by going to your Resource in your portal under \"Resource Management\" -> \"Model deployments\"."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### (Optional) Deployments: Create programatically\n",
|
|
"We can also create a deployment using code:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"model = \"text-similarity-curie-001\"\n",
|
|
"\n",
|
|
"# Now let's create the deployment\n",
|
|
"print(f'Creating a new deployment with model: {model}')\n",
|
|
"result = openai.Deployment.create(model=model, scale_settings={\"scale_type\":\"standard\"})\n",
|
|
"deployment_id = result[\"id\"]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### (Optional) Deployments: Retrieving\n",
|
|
"Now let's check the status of the newly created deployment"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"print(f'Checking for deployment status.')\n",
|
|
"resp = openai.Deployment.retrieve(id=deployment_id)\n",
|
|
"status = resp[\"status\"]\n",
|
|
"print(f'Deployment {deployment_id} is with status: {status}')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Deployments: Listing\n",
|
|
"Now because creating a new deployment takes a long time, let's look in the subscription for an already finished deployment that succeeded."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"print('While deployment running, selecting a completed one that supports embeddings.')\n",
|
|
"deployment_id = None\n",
|
|
"result = openai.Deployment.list()\n",
|
|
"for deployment in result.data:\n",
|
|
" if deployment[\"status\"] != \"succeeded\":\n",
|
|
" continue\n",
|
|
" \n",
|
|
" model = openai.Model.retrieve(deployment[\"model\"])\n",
|
|
" if model[\"capabilities\"][\"embeddings\"] != True:\n",
|
|
" continue\n",
|
|
" \n",
|
|
" deployment_id = deployment[\"id\"]\n",
|
|
" break\n",
|
|
"\n",
|
|
"if not deployment_id:\n",
|
|
" print('No deployment with status: succeeded found.')\n",
|
|
"else:\n",
|
|
" print(f'Found a succeeded deployment that supports embeddings with id: {deployment_id}.')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Embeddings\n",
|
|
"Now let's send a sample embedding to the deployment."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"embeddings = openai.Embedding.create(deployment_id=deployment_id,\n",
|
|
" input=\"The food was delicious and the waiter...\")\n",
|
|
" \n",
|
|
"print(embeddings)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### (Optional) Deployments: Delete\n",
|
|
"Finally let's delete the deployment"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"print(f'Deleting deployment: {deployment_id}')\n",
|
|
"openai.Deployment.delete(sid=deployment_id)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.8"
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "3a5103089ab7e7c666b279eeded403fcec76de49a40685dbdfe9f9c78ad97c17"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|