mirror of
https://github.com/openai/openai-cookbook
synced 2024-11-17 15:29:46 +00:00
efcc78953d
Co-authored-by: Simón Fishman <simonpfish@gmail.com>
427 lines
15 KiB
Plaintext
427 lines
15 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Code search\n",
|
|
"\n",
|
|
"This notebook shows how Ada embeddings can be used to implement semantic code search. For this demonstration, we use our own [openai-python code repository](https://github.com/openai/openai-python). We implement a simple version of file parsing and extracting of functions from python files, which can be embedded, indexed, and queried."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Helper Functions\n",
|
|
"\n",
|
|
"We first setup some simple parsing functions that allow us to extract important information from our codebase."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"from pathlib import Path\n",
|
|
"\n",
|
|
"DEF_PREFIXES = ['def ', 'async def ']\n",
|
|
"NEWLINE = '\\n'\n",
|
|
"\n",
|
|
"def get_function_name(code):\n",
|
|
" \"\"\"\n",
|
|
" Extract function name from a line beginning with 'def' or 'async def'.\n",
|
|
" \"\"\"\n",
|
|
" for prefix in DEF_PREFIXES:\n",
|
|
" if code.startswith(prefix):\n",
|
|
" return code[len(prefix): code.index('(')]\n",
|
|
"\n",
|
|
"\n",
|
|
"def get_until_no_space(all_lines, i):\n",
|
|
" \"\"\"\n",
|
|
" Get all lines until a line outside the function definition is found.\n",
|
|
" \"\"\"\n",
|
|
" ret = [all_lines[i]]\n",
|
|
" for j in range(i + 1, len(all_lines)):\n",
|
|
" if len(all_lines[j]) == 0 or all_lines[j][0] in [' ', '\\t', ')']:\n",
|
|
" ret.append(all_lines[j])\n",
|
|
" else:\n",
|
|
" break\n",
|
|
" return NEWLINE.join(ret)\n",
|
|
"\n",
|
|
"\n",
|
|
"def get_functions(filepath):\n",
|
|
" \"\"\"\n",
|
|
" Get all functions in a Python file.\n",
|
|
" \"\"\"\n",
|
|
" with open(filepath, 'r') as file:\n",
|
|
" all_lines = file.read().replace('\\r', NEWLINE).split(NEWLINE)\n",
|
|
" for i, l in enumerate(all_lines):\n",
|
|
" for prefix in DEF_PREFIXES:\n",
|
|
" if l.startswith(prefix):\n",
|
|
" code = get_until_no_space(all_lines, i)\n",
|
|
" function_name = get_function_name(code)\n",
|
|
" yield {\n",
|
|
" 'code': code,\n",
|
|
" 'function_name': function_name,\n",
|
|
" 'filepath': filepath,\n",
|
|
" }\n",
|
|
" break\n",
|
|
"\n",
|
|
"\n",
|
|
"def extract_functions_from_repo(code_root):\n",
|
|
" \"\"\"\n",
|
|
" Extract all .py functions from the repository.\n",
|
|
" \"\"\"\n",
|
|
" code_files = list(code_root.glob('**/*.py'))\n",
|
|
"\n",
|
|
" num_files = len(code_files)\n",
|
|
" print(f'Total number of .py files: {num_files}')\n",
|
|
"\n",
|
|
" if num_files == 0:\n",
|
|
" print('Verify openai-python repo exists and code_root is set correctly.')\n",
|
|
" return None\n",
|
|
"\n",
|
|
" all_funcs = [\n",
|
|
" func\n",
|
|
" for code_file in code_files\n",
|
|
" for func in get_functions(str(code_file))\n",
|
|
" ]\n",
|
|
"\n",
|
|
" num_funcs = len(all_funcs)\n",
|
|
" print(f'Total number of functions extracted: {num_funcs}')\n",
|
|
"\n",
|
|
" return all_funcs"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Data Loading\n",
|
|
"\n",
|
|
"We'll first load the openai-python folder and extract the needed information using the functions we defined above."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Total number of .py files: 57\n",
|
|
"Total number of functions extracted: 118\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Set user root directory to the 'openai-python' repository\n",
|
|
"root_dir = Path.home()\n",
|
|
"\n",
|
|
"# Assumes the 'openai-python' repository exists in the user's root directory\n",
|
|
"code_root = root_dir / 'openai-python'\n",
|
|
"\n",
|
|
"# Extract all functions from the repository\n",
|
|
"all_funcs = extract_functions_from_repo(code_root)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Now that we have our content, we can pass the data to the text-embedding-ada-002 endpoint to get back our vector embeddings."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>code</th>\n",
|
|
" <th>function_name</th>\n",
|
|
" <th>filepath</th>\n",
|
|
" <th>code_embedding</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>def _console_log_level():\\n if openai.log i...</td>\n",
|
|
" <td>_console_log_level</td>\n",
|
|
" <td>openai/util.py</td>\n",
|
|
" <td>[0.033906757831573486, -0.00418944051489234, 0...</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>def log_debug(message, **params):\\n msg = l...</td>\n",
|
|
" <td>log_debug</td>\n",
|
|
" <td>openai/util.py</td>\n",
|
|
" <td>[-0.004059609025716782, 0.004895503632724285, ...</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>def log_info(message, **params):\\n msg = lo...</td>\n",
|
|
" <td>log_info</td>\n",
|
|
" <td>openai/util.py</td>\n",
|
|
" <td>[0.0048639848828315735, 0.0033139237202703953,...</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>def log_warn(message, **params):\\n msg = lo...</td>\n",
|
|
" <td>log_warn</td>\n",
|
|
" <td>openai/util.py</td>\n",
|
|
" <td>[0.0024026145692914724, -0.010721310041844845,...</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>4</th>\n",
|
|
" <td>def logfmt(props):\\n def fmt(key, val):\\n ...</td>\n",
|
|
" <td>logfmt</td>\n",
|
|
" <td>openai/util.py</td>\n",
|
|
" <td>[0.01664826273918152, 0.01730910874903202, 0.0...</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" code function_name \\\n",
|
|
"0 def _console_log_level():\\n if openai.log i... _console_log_level \n",
|
|
"1 def log_debug(message, **params):\\n msg = l... log_debug \n",
|
|
"2 def log_info(message, **params):\\n msg = lo... log_info \n",
|
|
"3 def log_warn(message, **params):\\n msg = lo... log_warn \n",
|
|
"4 def logfmt(props):\\n def fmt(key, val):\\n ... logfmt \n",
|
|
"\n",
|
|
" filepath code_embedding \n",
|
|
"0 openai/util.py [0.033906757831573486, -0.00418944051489234, 0... \n",
|
|
"1 openai/util.py [-0.004059609025716782, 0.004895503632724285, ... \n",
|
|
"2 openai/util.py [0.0048639848828315735, 0.0033139237202703953,... \n",
|
|
"3 openai/util.py [0.0024026145692914724, -0.010721310041844845,... \n",
|
|
"4 openai/util.py [0.01664826273918152, 0.01730910874903202, 0.0... "
|
|
]
|
|
},
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"from openai.embeddings_utils import get_embedding\n",
|
|
"\n",
|
|
"df = pd.DataFrame(all_funcs)\n",
|
|
"df['code_embedding'] = df['code'].apply(lambda x: get_embedding(x, engine='text-embedding-ada-002'))\n",
|
|
"df['filepath'] = df['filepath'].map(lambda x: Path(x).relative_to(code_root))\n",
|
|
"df.to_csv(\"data/code_search_openai-python.csv\", index=False)\n",
|
|
"df.head()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Testing\n",
|
|
"\n",
|
|
"Let's test our endpoint with some simple queries. If you're familiar with the `openai-python` repository, you'll see that we're able to easily find functions we're looking for only a simple English description.\n",
|
|
"\n",
|
|
"We define a search_functions method that takes our data that contains our embeddings, a query string, and some other configuration options. The process of searching our database works like such:\n",
|
|
"\n",
|
|
"1. We first embed our query string (code_query) with text-embedding-ada-002. The reasoning here is that a query string like 'a function that reverses a string' and a function like 'def reverse(string): return string[::-1]' will be very similar when embedded.\n",
|
|
"2. We then calculate the cosine similarity between our query string embedding and all data points in our database. This gives a distance between each point and our query.\n",
|
|
"3. We finally sort all of our data points by their distance to our query string and return the number of results requested in the function parameters. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from openai.embeddings_utils import cosine_similarity\n",
|
|
"\n",
|
|
"def search_functions(df, code_query, n=3, pprint=True, n_lines=7):\n",
|
|
" embedding = get_embedding(code_query, engine='text-embedding-ada-002')\n",
|
|
" df['similarities'] = df.code_embedding.apply(lambda x: cosine_similarity(x, embedding))\n",
|
|
"\n",
|
|
" res = df.sort_values('similarities', ascending=False).head(n)\n",
|
|
"\n",
|
|
" if pprint:\n",
|
|
" for r in res.iterrows():\n",
|
|
" print(f\"{r[1].filepath}:{r[1].function_name} score={round(r[1].similarities, 3)}\")\n",
|
|
" print(\"\\n\".join(r[1].code.split(\"\\n\")[:n_lines]))\n",
|
|
" print('-' * 70)\n",
|
|
"\n",
|
|
" return res"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"openai/validators.py:format_inferrer_validator score=0.751\n",
|
|
"def format_inferrer_validator(df):\n",
|
|
" \"\"\"\n",
|
|
" This validator will infer the likely fine-tuning format of the data, and display it to the user if it is classification.\n",
|
|
" It will also suggest to use ada and explain train/validation split benefits.\n",
|
|
" \"\"\"\n",
|
|
" ft_type = infer_task_type(df)\n",
|
|
" immediate_msg = None\n",
|
|
"----------------------------------------------------------------------\n",
|
|
"openai/validators.py:get_validators score=0.748\n",
|
|
"def get_validators():\n",
|
|
" return [\n",
|
|
" num_examples_validator,\n",
|
|
" lambda x: necessary_column_validator(x, \"prompt\"),\n",
|
|
" lambda x: necessary_column_validator(x, \"completion\"),\n",
|
|
" additional_column_validator,\n",
|
|
" non_empty_field_validator,\n",
|
|
"----------------------------------------------------------------------\n",
|
|
"openai/validators.py:infer_task_type score=0.739\n",
|
|
"def infer_task_type(df):\n",
|
|
" \"\"\"\n",
|
|
" Infer the likely fine-tuning task type from the data\n",
|
|
" \"\"\"\n",
|
|
" CLASSIFICATION_THRESHOLD = 3 # min_average instances of each class\n",
|
|
" if sum(df.prompt.str.len()) == 0:\n",
|
|
" return \"open-ended generation\"\n",
|
|
"----------------------------------------------------------------------\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"res = search_functions(df, 'fine-tuning input data validation logic', n=3)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"openai/validators.py:get_common_xfix score=0.794\n",
|
|
"def get_common_xfix(series, xfix=\"suffix\"):\n",
|
|
" \"\"\"\n",
|
|
" Finds the longest common suffix or prefix of all the values in a series\n",
|
|
" \"\"\"\n",
|
|
" common_xfix = \"\"\n",
|
|
" while True:\n",
|
|
" common_xfixes = (\n",
|
|
" series.str[-(len(common_xfix) + 1) :]\n",
|
|
" if xfix == \"suffix\"\n",
|
|
" else series.str[: len(common_xfix) + 1]\n",
|
|
"----------------------------------------------------------------------\n",
|
|
"openai/validators.py:common_completion_suffix_validator score=0.778\n",
|
|
"def common_completion_suffix_validator(df):\n",
|
|
" \"\"\"\n",
|
|
" This validator will suggest to add a common suffix to the completion if one doesn't already exist in case of classification or conditional generation.\n",
|
|
" \"\"\"\n",
|
|
" error_msg = None\n",
|
|
" immediate_msg = None\n",
|
|
" optional_msg = None\n",
|
|
" optional_fn = None\n",
|
|
"\n",
|
|
" ft_type = infer_task_type(df)\n",
|
|
"----------------------------------------------------------------------\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"res = search_functions(df, 'find common suffix', n=2, n_lines=10)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"openai/cli.py:tools_register score=0.78\n",
|
|
"def tools_register(parser):\n",
|
|
" subparsers = parser.add_subparsers(\n",
|
|
" title=\"Tools\", help=\"Convenience client side tools\"\n",
|
|
" )\n",
|
|
"\n",
|
|
" def help(args):\n",
|
|
" parser.print_help()\n",
|
|
"\n",
|
|
" parser.set_defaults(func=help)\n",
|
|
"\n",
|
|
" sub = subparsers.add_parser(\"fine_tunes.prepare_data\")\n",
|
|
" sub.add_argument(\n",
|
|
" \"-f\",\n",
|
|
" \"--file\",\n",
|
|
" required=True,\n",
|
|
" help=\"JSONL, JSON, CSV, TSV, TXT or XLSX file containing prompt-completion examples to be analyzed.\"\n",
|
|
" \"This should be the local file path.\",\n",
|
|
" )\n",
|
|
" sub.add_argument(\n",
|
|
" \"-q\",\n",
|
|
"----------------------------------------------------------------------\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"res = search_functions(df, 'Command line interface for fine-tuning', n=1, n_lines=20)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "openai",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.9"
|
|
},
|
|
"orig_nbformat": 4
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|