mirror of
https://github.com/openai/openai-cookbook
synced 2024-11-08 01:10:29 +00:00
84 lines
3.5 KiB
Python
84 lines
3.5 KiB
Python
import openai
|
|
from termcolor import colored
|
|
import streamlit as st
|
|
|
|
from database import get_redis_connection,get_redis_results
|
|
|
|
from config import CHAT_MODEL,COMPLETIONS_MODEL, INDEX_NAME
|
|
|
|
redis_client = get_redis_connection()
|
|
|
|
# A basic class to create a message as a dict for chat
|
|
class Message:
|
|
|
|
|
|
def __init__(self,role,content):
|
|
|
|
self.role = role
|
|
self.content = content
|
|
|
|
def message(self):
|
|
|
|
return {"role": self.role,"content": self.content}
|
|
|
|
# New Assistant class to add a vector database call to its responses
|
|
class RetrievalAssistant:
|
|
|
|
def __init__(self):
|
|
self.conversation_history = []
|
|
|
|
def _get_assistant_response(self, prompt):
|
|
|
|
try:
|
|
completion = openai.ChatCompletion.create(
|
|
model=CHAT_MODEL,
|
|
messages=prompt,
|
|
temperature=0.1
|
|
)
|
|
|
|
response_message = Message(completion['choices'][0]['message']['role'],completion['choices'][0]['message']['content'])
|
|
return response_message.message()
|
|
|
|
except Exception as e:
|
|
|
|
return f'Request failed with exception {e}'
|
|
|
|
# The function to retrieve Redis search results
|
|
def _get_search_results(self,prompt):
|
|
latest_question = prompt
|
|
search_content = get_redis_results(redis_client,latest_question,INDEX_NAME)['result'][0]
|
|
return search_content
|
|
|
|
|
|
def ask_assistant(self, next_user_prompt):
|
|
[self.conversation_history.append(x) for x in next_user_prompt]
|
|
assistant_response = self._get_assistant_response(self.conversation_history)
|
|
|
|
# Answer normally unless the trigger sequence is used "searching_for_answers"
|
|
if 'searching for answers' in assistant_response['content'].lower():
|
|
question_extract = openai.Completion.create(model=COMPLETIONS_MODEL,prompt=f"Extract the user's latest question and the year for that question from this conversation: {self.conversation_history}. Extract it as a sentence stating the Question and Year")
|
|
search_result = self._get_search_results(question_extract['choices'][0]['text'])
|
|
|
|
# We insert an extra system prompt here to give fresh context to the Chatbot on how to use the Redis results
|
|
# In this instance we add it to the conversation history, but in production it may be better to hide
|
|
self.conversation_history.insert(-1,{"role": 'system',"content": f"Answer the user's question using this content: {search_result}. If you cannot answer the question, say 'Sorry, I don't know the answer to this one'"})
|
|
|
|
assistant_response = self._get_assistant_response(self.conversation_history)
|
|
|
|
self.conversation_history.append(assistant_response)
|
|
return assistant_response
|
|
else:
|
|
self.conversation_history.append(assistant_response)
|
|
return assistant_response
|
|
|
|
|
|
def pretty_print_conversation_history(self, colorize_assistant_replies=True):
|
|
for entry in self.conversation_history:
|
|
if entry['role'] == 'system':
|
|
pass
|
|
else:
|
|
prefix = entry['role']
|
|
content = entry['content']
|
|
output = colored(prefix +':\n' + content, 'green') if colorize_assistant_replies and entry['role'] == 'assistant' else prefix +':\n' + content
|
|
#prefix = entry['role']
|
|
print(output) |