mirror of
https://github.com/openai/openai-cookbook
synced 2024-11-11 13:11:02 +00:00
f6ea13ebed
Co-authored-by: Aaron Wilkowitz <157151487+aaronwilkowitz-openai@users.noreply.github.com>
241 lines
11 KiB
JavaScript
241 lines
11 KiB
JavaScript
const { Client } = require('@microsoft/microsoft-graph-client');
|
|
const pdfParse = require('pdf-parse');
|
|
const { Buffer } = require('buffer');
|
|
const path = require('path');
|
|
const axios = require('axios');
|
|
const qs = require('querystring');
|
|
const { OpenAI } = require("openai");
|
|
|
|
//// --------- ENVIRONMENT CONFIGURATION AND INITIALIZATION ---------
|
|
// Function to initialize Microsoft Graph client
|
|
const initGraphClient = (accessToken) => {
|
|
return Client.init({
|
|
authProvider: (done) => {
|
|
done(null, accessToken); // Pass the access token for Graph API calls
|
|
}
|
|
});
|
|
};
|
|
|
|
//// --------- AUTHENTICATION AND TOKEN MANAGEMENT ---------
|
|
// Function to obtain OBO token. This will take the access token in request header (scoped to this Function App) and generate a new token to use for Graph API
|
|
const getOboToken = async (userAccessToken) => {
|
|
const { TENANT_ID, CLIENT_ID, MICROSOFT_PROVIDER_AUTHENTICATION_SECRET } = process.env;
|
|
const scope = 'https://graph.microsoft.com/.default';
|
|
const oboTokenUrl = `https://login.microsoftonline.com/${TENANT_ID}/oauth2/v2.0/token`;
|
|
|
|
const params = {
|
|
client_id: CLIENT_ID,
|
|
client_secret: MICROSOFT_PROVIDER_AUTHENTICATION_SECRET,
|
|
grant_type: 'urn:ietf:params:oauth:grant-type:jwt-bearer',
|
|
assertion: userAccessToken,
|
|
requested_token_use: 'on_behalf_of',
|
|
scope: scope
|
|
};
|
|
|
|
try {
|
|
const response = await axios.post(oboTokenUrl, qs.stringify(params), {
|
|
headers: {
|
|
'Content-Type': 'application/x-www-form-urlencoded'
|
|
}
|
|
});
|
|
return response.data.access_token; // OBO token
|
|
} catch (error) {
|
|
console.error('Error obtaining OBO token:', error.response?.data || error.message);
|
|
throw error;
|
|
}
|
|
};
|
|
//// --------- DOCUMENT PROCESSING ---------
|
|
// Function to fetch drive item content and convert to text
|
|
const getDriveItemContent = async (client, driveId, itemId, name) => {
|
|
try {
|
|
const fileType = path.extname(name).toLowerCase();
|
|
// the below files types are the ones that are able to be converted to PDF to extract the text. See https://learn.microsoft.com/en-us/graph/api/driveitem-get-content-format?view=graph-rest-1.0&tabs=http
|
|
const allowedFileTypes = ['.pdf', '.doc', '.docx', '.odp', '.ods', '.odt', '.pot', '.potm', '.potx', '.pps', '.ppsx', '.ppsxm', '.ppt', '.pptm', '.pptx', '.rtf'];
|
|
// filePath changes based on file type, adding ?format=pdf to convert non-pdf types to pdf for text extraction, so all files in allowedFileTypes above are converted to pdf
|
|
const filePath = `/drives/${driveId}/items/${itemId}/content` + ((fileType === '.pdf' || fileType === '.txt' || fileType === '.csv') ? '' : '?format=pdf');
|
|
if (allowedFileTypes.includes(fileType)) {
|
|
response = await client.api(filePath).getStream();
|
|
// The below takes the chunks in response and combines
|
|
let chunks = [];
|
|
for await (let chunk of response) {
|
|
chunks.push(chunk);
|
|
}
|
|
let buffer = Buffer.concat(chunks);
|
|
// the below extracts the text from the PDF.
|
|
const pdfContents = await pdfParse(buffer);
|
|
return pdfContents.text;
|
|
} else if (fileType === '.txt') {
|
|
// If the type is txt, it does not need to create a stream and instead just grabs the content
|
|
response = await client.api(filePath).get();
|
|
return response;
|
|
} else if (fileType === '.csv') {
|
|
response = await client.api(filePath).getStream();
|
|
let chunks = [];
|
|
for await (let chunk of response) {
|
|
chunks.push(chunk);
|
|
}
|
|
let buffer = Buffer.concat(chunks);
|
|
let dataString = buffer.toString('utf-8');
|
|
return dataString
|
|
|
|
} else {
|
|
return 'Unsupported File Type';
|
|
}
|
|
|
|
} catch (error) {
|
|
console.error('Error fetching drive content:', error);
|
|
throw new Error(`Failed to fetch content for ${name}: ${error.message}`);
|
|
}
|
|
};
|
|
|
|
// Function to get relevant parts of text using got-4o-mini.
|
|
const getRelevantParts = async (text, query) => {
|
|
try {
|
|
// We use your OpenAI key to initialize the OpenAI client
|
|
const openAIKey = process.env["OPENAI_API_KEY"];
|
|
const openai = new OpenAI({
|
|
apiKey: openAIKey,
|
|
});
|
|
const response = await openai.chat.completions.create({
|
|
// Using gpt-4o-mini due to speed to prevent timeouts. You can tweak this prompt as needed
|
|
model: "gpt-4o-mini",
|
|
messages: [
|
|
{"role": "system", "content": "You are a helpful assistant that finds relevant content in text based on a query. You only return the relevant sentences, and you return a maximum of 10 sentences"},
|
|
{"role": "user", "content": `Based on this question: **"${query}"**, get the relevant parts from the following text:*****\n\n${text}*****. If you cannot answer the question based on the text, respond with 'No information provided'`}
|
|
],
|
|
// using temperature of 0 since we want to just extract the relevant content
|
|
temperature: 0,
|
|
// using max_tokens of 1000, but you can customize this based on the number of documents you are searching.
|
|
max_tokens: 1000
|
|
});
|
|
return response.choices[0].message.content;
|
|
} catch (error) {
|
|
console.error('Error with OpenAI:', error);
|
|
return 'Error processing text with OpenAI' + error;
|
|
}
|
|
};
|
|
|
|
//// --------- AZURE FUNCTION LOGIC ---------
|
|
// Below is what the Azure Function executes
|
|
module.exports = async function (context, req) {
|
|
const query = req.query.query || (req.body && req.body.query);
|
|
const searchTerm = req.query.searchTerm || (req.body && req.body.searchTerm);
|
|
if (!req.headers.authorization) {
|
|
context.res = {
|
|
status: 400,
|
|
body: 'Authorization header is missing'
|
|
};
|
|
return;
|
|
}
|
|
/// The below takes the token passed to the function, to use to get an OBO token.
|
|
const bearerToken = req.headers.authorization.split(' ')[1];
|
|
let accessToken;
|
|
try {
|
|
accessToken = await getOboToken(bearerToken);
|
|
} catch (error) {
|
|
context.res = {
|
|
status: 500,
|
|
body: `Failed to obtain OBO token: ${error.message}`
|
|
};
|
|
return;
|
|
}
|
|
// Initialize the Graph Client using the initGraphClient function defined above
|
|
let client = initGraphClient(accessToken);
|
|
// this is the search body to be used in the Microsft Graph Search API: https://learn.microsoft.com/en-us/graph/search-concept-files
|
|
const requestBody = {
|
|
requests: [
|
|
{
|
|
entityTypes: ['driveItem'],
|
|
query: {
|
|
queryString: searchTerm
|
|
},
|
|
from: 0,
|
|
// the below is set to summarize the top 10 search results from the Graph API, but can configure based on your documents.
|
|
size: 10
|
|
}
|
|
]
|
|
};
|
|
|
|
try {
|
|
// Function to tokenize content (e.g., based on words).
|
|
const tokenizeContent = (content) => {
|
|
return content.split(/\s+/);
|
|
};
|
|
|
|
// Function to break tokens into 10k token windows for got-4o-mini
|
|
const breakIntoTokenWindows = (tokens) => {
|
|
const tokenWindows = []
|
|
const maxWindowTokens = 10000; // 10k tokens
|
|
let startIndex = 0;
|
|
|
|
while (startIndex < tokens.length) {
|
|
const window = tokens.slice(startIndex, startIndex + maxWindowTokens);
|
|
tokenWindows.push(window);
|
|
startIndex += maxWindowTokens;
|
|
}
|
|
|
|
return tokenWindows;
|
|
};
|
|
// This is where we are doing the search
|
|
const list = await client.api('/search/query').post(requestBody);
|
|
|
|
const processList = async () => {
|
|
// This will go through and for each search response, grab the contents of the file and summarize with got-4o-mini
|
|
const results = [];
|
|
|
|
await Promise.all(list.value[0].hitsContainers.map(async (container) => {
|
|
for (const hit of container.hits) {
|
|
if (hit.resource["@odata.type"] === "#microsoft.graph.driveItem") {
|
|
const { name, id } = hit.resource;
|
|
// We use the below to grab the URL of the file to include in the response
|
|
const webUrl = hit.resource.webUrl.replace(/\s/g, "%20");
|
|
// The Microsoft Graph API ranks the reponses, so we use this to order it
|
|
const rank = hit.rank;
|
|
// The below is where the file lives
|
|
const driveId = hit.resource.parentReference.driveId;
|
|
const contents = await getDriveItemContent(client, driveId, id, name);
|
|
if (contents !== 'Unsupported File Type') {
|
|
// Tokenize content using function defined previously
|
|
const tokens = tokenizeContent(contents);
|
|
|
|
// Break tokens into 10k token windows
|
|
const tokenWindows = breakIntoTokenWindows(tokens);
|
|
|
|
// Process each token window and combine results
|
|
const relevantPartsPromises = tokenWindows.map(window => getRelevantParts(window.join(' '), query));
|
|
const relevantParts = await Promise.all(relevantPartsPromises);
|
|
const combinedResults = relevantParts.join('\n'); // Combine results
|
|
|
|
results.push({ name, webUrl, rank, contents: combinedResults });
|
|
}
|
|
else {
|
|
results.push({ name, webUrl, rank, contents: 'Unsupported File Type' });
|
|
}
|
|
}
|
|
}
|
|
}));
|
|
|
|
return results;
|
|
};
|
|
let results;
|
|
if (list.value[0].hitsContainers[0].total == 0) {
|
|
// Return no results found to the API if the Microsoft Graph API returns no results
|
|
results = 'No results found';
|
|
} else {
|
|
// If the Microsoft Graph API does return results, then run processList to iterate through.
|
|
results = await processList();
|
|
results.sort((a, b) => a.rank - b.rank);
|
|
}
|
|
context.res = {
|
|
status: 200,
|
|
body: results
|
|
};
|
|
} catch (error) {
|
|
context.res = {
|
|
status: 500,
|
|
body: `Error performing search or processing results: ${error.message}`,
|
|
};
|
|
}
|
|
};
|
|
|