openai-cookbook/examples/Get_embeddings.ipynb
Ted Sanders da8725cdd7 lint
2022-07-12 15:24:43 -07:00

116 lines
2.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get embeddings\n",
"\n",
"The function `get_embedding` will give us an embedding for an input text."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"12288"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import openai\n",
"\n",
"embedding = openai.Embedding.create(\n",
" input=\"Sample document text goes here\",\n",
" engine=\"text-similarity-davinci-001\"\n",
")[\"data\"][0][\"embedding\"]\n",
"len(embedding)\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1024\n"
]
}
],
"source": [
"import openai\n",
"from tenacity import retry, wait_random_exponential, stop_after_attempt\n",
"\n",
"\n",
"@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))\n",
"def get_embedding(text: str, engine=\"text-similarity-davinci-001\") -> list[float]:\n",
"\n",
" # replace newlines, which can negatively affect performance.\n",
" text = text.replace(\"\\n\", \" \")\n",
"\n",
" return openai.Embedding.create(input=[text], engine=engine)[\"data\"][0][\"embedding\"]\n",
"\n",
"\n",
"embedding = get_embedding(\"Sample query text goes here\", engine=\"text-search-ada-query-001\")\n",
"print(len(embedding))\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1024\n"
]
}
],
"source": [
"embedding = get_embedding(\"Sample document text goes here\", engine=\"text-search-ada-doc-001\")\n",
"print(len(embedding))\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.9 ('openai')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.9"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "365536dcbde60510dc9073d6b991cd35db2d9bac356a11f5b64279a5e6708b97"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}