openai-cookbook/examples/Get_embeddings_from_dataset.ipynb
2024-01-25 11:59:05 -06:00

234 lines
7.2 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Get embeddings from dataset\n",
"\n",
"This notebook gives an example on how to get embeddings from a large dataset.\n",
"\n",
"\n",
"## 1. Load the dataset\n",
"\n",
"The dataset used in this example is [fine-food reviews](https://www.kaggle.com/snap/amazon-fine-food-reviews) from Amazon. The dataset contains a total of 568,454 food reviews Amazon users left up to October 2012. We will use a subset of this dataset, consisting of 1,000 most recent reviews for illustration purposes. The reviews are in English and tend to be positive or negative. Each review has a ProductId, UserId, Score, review title (Summary) and review body (Text).\n",
"\n",
"We will combine the review summary and review text into a single combined text. The model will encode this combined text and it will output a single vector embedding."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"To run this notebook, you will need to install: pandas, openai, transformers, plotly, matplotlib, scikit-learn, torch (transformer dep), torchvision, and scipy."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import tiktoken\n",
"\n",
"from utils.embeddings_utils import get_embedding"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"embedding_model = \"text-embedding-3-small\"\n",
"embedding_encoding = \"cl100k_base\"\n",
"max_tokens = 8000 # the maximum for text-embedding-3-small is 8191"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Time</th>\n",
" <th>ProductId</th>\n",
" <th>UserId</th>\n",
" <th>Score</th>\n",
" <th>Summary</th>\n",
" <th>Text</th>\n",
" <th>combined</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1351123200</td>\n",
" <td>B003XPF9BO</td>\n",
" <td>A3R7JR3FMEBXQB</td>\n",
" <td>5</td>\n",
" <td>where does one start...and stop... with a tre...</td>\n",
" <td>Wanted to save some to bring to my Chicago fam...</td>\n",
" <td>Title: where does one start...and stop... wit...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1351123200</td>\n",
" <td>B003JK537S</td>\n",
" <td>A3JBPC3WFUT5ZP</td>\n",
" <td>1</td>\n",
" <td>Arrived in pieces</td>\n",
" <td>Not pleased at all. When I opened the box, mos...</td>\n",
" <td>Title: Arrived in pieces; Content: Not pleased...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Time ProductId UserId Score \\\n",
"0 1351123200 B003XPF9BO A3R7JR3FMEBXQB 5 \n",
"1 1351123200 B003JK537S A3JBPC3WFUT5ZP 1 \n",
"\n",
" Summary \\\n",
"0 where does one start...and stop... with a tre... \n",
"1 Arrived in pieces \n",
"\n",
" Text \\\n",
"0 Wanted to save some to bring to my Chicago fam... \n",
"1 Not pleased at all. When I opened the box, mos... \n",
"\n",
" combined \n",
"0 Title: where does one start...and stop... wit... \n",
"1 Title: Arrived in pieces; Content: Not pleased... "
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# load & inspect dataset\n",
"input_datapath = \"data/fine_food_reviews_1k.csv\" # to save space, we provide a pre-filtered dataset\n",
"df = pd.read_csv(input_datapath, index_col=0)\n",
"df = df[[\"Time\", \"ProductId\", \"UserId\", \"Score\", \"Summary\", \"Text\"]]\n",
"df = df.dropna()\n",
"df[\"combined\"] = (\n",
" \"Title: \" + df.Summary.str.strip() + \"; Content: \" + df.Text.str.strip()\n",
")\n",
"df.head(2)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1000"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# subsample to 1k most recent reviews and remove samples that are too long\n",
"top_n = 1000\n",
"df = df.sort_values(\"Time\").tail(top_n * 2) # first cut to first 2k entries, assuming less than half will be filtered out\n",
"df.drop(\"Time\", axis=1, inplace=True)\n",
"\n",
"encoding = tiktoken.get_encoding(embedding_encoding)\n",
"\n",
"# omit reviews that are too long to embed\n",
"df[\"n_tokens\"] = df.combined.apply(lambda x: len(encoding.encode(x)))\n",
"df = df[df.n_tokens <= max_tokens].tail(top_n)\n",
"len(df)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Get embeddings and save them for future reuse"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"# Ensure you have your API key set in your environment per the README: https://github.com/openai/openai-python#usage\n",
"\n",
"# This may take a few minutes\n",
"df[\"embedding\"] = df.combined.apply(lambda x: get_embedding(x, model=embedding_model))\n",
"df.to_csv(\"data/fine_food_reviews_with_embeddings_1k.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"a = get_embedding(\"hi\", model=embedding_model)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "openai",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "365536dcbde60510dc9073d6b991cd35db2d9bac356a11f5b64279a5e6708b97"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}