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Overview
What we’ll cover

● Technical patterns

● Best practices

● Common pitfalls

● Resources

Retrieval-Augmented Generation 
enhances the capabilities of language 
models by combining them with a 
retrieval system. This allows the model 
to leverage external knowledge sources 
to generate more accurate and 
contextually relevant responses.

Example use cases
- Provide answers with up-to-date 

information
- Generate contextual responses
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What is RAG
Retrieve information to Augment the model’s knowledge and Generate the output

LLM

ask

result
Knowledge 

Base / External 
sources

search

return information

“What is your 
return policy?”

Total refunds: 0-14 days
50% of value vouchers: 14-30 days
$5 discount on next order: > 30 days

“You can get a full refund up 
to 14 days after the 

purchase, then up to 30 days 
you would get a voucher for 
half the value of your order”
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When to use RAG

● Introducing new information to the model 

to update its knowledge

● Reducing hallucinations by controlling 

content
/!\ Hallucinations can still happen with RAG

Good for  ✅ Not good for  ❌

● Teaching the model a specific format, style, 

or language
➔ Use fine-tuning or custom models instead

● Reducing token usage
➔ Consider fine-tuning depending on the use 

case
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Technical patterns

Data preparation

● Chunking

● Embeddings

● Augmenting 
content

Input processing

● Input 
augmentation

● NER

● Embeddings

Retrieval

● Search

● Multi-step 
retrieval

● Re-ranking

Answer Generation

● Context window

● Optimisation

● Safety checks
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Technical patterns
Data preparation BEST PRACTICES

Pre-process content for LLM 
consumption: 
Add summary, headers for each 
part, etc.
+ curate relevant data sources

Knowledge 
Base

content

chunk documents into multiple 
pieces for easier consumption

0.983, 0.123, 0.289…

0.876, 0.145, 0.179…

0.983, 0.123, 0.289…

embeddings

COMMON PITFALLS

➔ Having too much low-quality 
content

➔ Having too large documentsAugment content 
using LLMs

Ex: parse text only, ask gpt-4 to rephrase & 
summarize each part, generate bullet points…



Why chunking?

If your system doesn’t require 
entire documents to provide 
relevant answers, you can 
chunk them into multiple pieces 
for easier consumption (reduced 
cost & latency).

Other approaches: graphs or 
map-reduce
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Technical patterns
Data preparation: chunking

Things to consider

● Overlap:
○ Should chunks be independent or overlap one 

another?
○ If they overlap, by how much?

● Size of chunks: 
○ What is the optimal chunk size for my use case?
○ Do I want to include a lot in the context window or 

just the minimum?
● Where to chunk:

○ Should I chunk every N tokens or use specific 
separators? 

○ Is there a logical way to split the context that would 
help the retrieval process?

● What to return:
○ Should I return chunks across multiple documents 

or top chunks within the same doc?
○ Should chunks be linked together with metadata to 

indicate common properties?



What to embed?

Depending on your use case 
you might not want just to 
embed the text in the 
documents but metadata as well 
- anything that will make it easier 
to surface this specific chunk or 
document when performing a 
search
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Technical patterns
Data preparation: embeddings

Examples

Embedding Q&A posts in a forum
You might want to embed the title of the posts, 
the text of the original question and the content of 
the top answers.
Additionally, if the posts are tagged by topic or 
with keywords, you can embed those too.

Embedding product specs
In additional to embedding the text contained in 
documents describing the products, you might 
want to add metadata that you have on the 
product such as the color, size, etc. in your 
embeddings.



10

Technical patterns
Data preparation: augmenting content

What does “Augmenting 
content” mean?

Augmenting content refers to 
modifications of the original content 
to make it more digestible for a 
system relying on RAG. The 
modifications could be a change in 
format, wording, or adding 
descriptive content such as 
summaries or keywords.

Example approaches

Make it a guide*
Reformat the content to look more like 
a step-by-step guide with clear 
headings and bullet-points, as this 
format is more easily understandable 
by an LLM.

Multimodality
Leverage models 
such as Whisper or 
GPT-4V to 
transform audio or 
visual content into 
text.
For example, you 
can use GPT-4V to 
generate tags for 
images or to 
describe slides.

Add descriptive metadata*
Consider adding keywords or text that 
users might search for when thinking 
of a specific product or service.

* GPT-4 can do this for you with the right prompt



keywords

summer

Process input according to task

Q&A
HyDE:  Ask LLM to hypothetically answer the 
question & use the answer to search the KB

Content search
Prompt LLM to rephrase input & optionally add 
more context

DB search
NER:  Find relevant entities to be used for a 
keyword search or to construct a search query
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Technical patterns
Input processing BEST PRACTICES

Consider how to transform the 
input to match content in the 
database
Consider using metadata to 
augment the user input

COMMON PITFALLS

➔ Comparing directly the input 
to the database without 
considering the task 
specificities 

0.983, 0.123, 0.289…

0.876, 0.145, 0.179…

embeddings

query

SELECT * from items…

red
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Technical patterns
Input processing: input augmentation

What is input augmentation?

Augmenting the input means turning 
it into something different, either 
rephrasing it, splitting it in several 
inputs or expanding it.
This helps boost performance as 
the LLM might understand better 
the user intent.

Example approaches

Query 
expansion*
Rephrase the 
query to be 
more 
descriptive

Fallback
Consider 
implementing a 
flow where the LLM 
can ask for 
clarification when 
there is not enough 
information in the 
original user query 
to get a result
(Especially relevant 
with tool usage)

Splitting a query in N*
When there is more than 1 question or 
intent in a user query, consider 
splitting it in several queries

* GPT-4 can do this for you with the right prompt

HyDE*
Hypothetically 
answer the 
question & use 
the answer to 
search the KB
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Technical patterns
Input processing: NER

Why use NER?

Using NER (Named Entity 
Recognition) allows to extract 
relevant entities from the input, that 
can then be used for more 
deterministic search queries. 
This can be useful when the scope 
is very constrained.

Example

Searching for movies
If you have a structured database containing 
metadata on movies, you can extract genre, 
actors or directors names, etc. from the user 
query and use this to search the database

Note: You can use exact values or embeddings after 
having extracted the relevant entities
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Technical patterns
Retrieval BEST PRACTICES

Use a combination of semantic 
search and deterministic queries 
where possible

+ Cache output where possible

COMMON PITFALLS

➔ The wrong elements could be 
compared when looking at 
text similarity, that is why 
re-ranking is important

INPUT

vector DB

relational / 
nosql db

0.983, 0.123, 0.289…

0.876, 0.145, 0.179…

embeddings

query

SELECT * from items…

keywords

summerred

Semantic 
search

re-ranking

RESULTS RESULTS

FINAL RESULT

Used to 
generate output
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Technical patterns
Retrieval: search

You can use a hybrid approach and combine several of these.
You can perform multiple searches in parallel or in sequence, or 
search for keywords with their embeddings for example.

How to search?

There are many different 
approaches to search depending on 
the use case and the existing 
system.

Semantic search Keyword search Search query

Using embeddings, you 
can perform semantic 
searches. You can 
compare embeddings 
with what is in your 
database and find the 
most similar.

If you have extracted 
specific entities or 
keywords to search for, 
you can search for these 
in your database.

Based on the extracted 
entities you have or the 
user input as is, you can 
construct search queries 
(SQL, cypher…) and use 
these queries to search 
your database.
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Technical patterns
Retrieval: multi-step retrieval

What is multi-step retrieval?

In some cases, there might be 
several actions to be performed to 
get the required information to 
generate an answer.

Things to consider

● Framework to be used:
○ When there are multiple steps to perform, 

consider whether you want to handle this 
yourself or use a framework to make it easier

● Cost & Latency:
○ Performing multiple steps at the retrieval 

stage can increase latency and cost 
significantly

○ Consider performing actions in parallel to 
reduce latency

● Chain of Thought:
○ Guide the assistant with the chain of thought 

approach: break down instructions into 
several steps, with clear guidelines on 
whether to continue, stop or do something 
else. 

○ This is more appropriate when tasks need to 
be performed sequentially - for example: “if 
this didn’t work, then do this”
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Technical patterns
Retrieval: re-ranking

What is re-ranking?

Re-ranking means re-ordering the 
results of the retrieval process to 
surface more relevant results.
This is particularly important when 
doing semantic searches.

Example approaches

Rule-based re-ranking
You can use metadata to rank results by relevance. For 
example, you can look at the recency of the documents, at 
tags, specific keywords in the title, etc.

Re-ranking algorithms
There are several existing algorithms/approaches you can use 
based on your use case: BERT-based re-rankers, 
cross-encoder re-ranking, TF-IDF algorithms…
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Technical patterns
Answer Generation BEST PRACTICES

Evaluate performance after each 
experimentation to assess if it’s 
worth exploring other paths
+ Implement guardrails if applicable

COMMON PITFALLS

➔ Going for fine-tuning without 
trying other approaches

➔ Not paying attention to the 
way the model is prompted

FINAL RESULT

Piece of content 
retrieved

LLM
Prompt including 

the content

User sees the 
final result
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Technical patterns
Answer Generation: context window

Things to consider

● Context window max size:
○ There is a maximum size, so putting too 

much content is not ideal
○ In conversation use cases, the 

conversation will be part of the context 
as well and will add to that size

● Cost & Latency vs Accuracy:
○ More context results in increased 

latency and additional costs since there 
will be more input tokens

○ Less context might also result in 
decreased accuracy

● “Lost in the middle” problem:
○ When there is too much context, LLMs 

tend to forget the text “in the middle” of 
the content and might look over some 
important information.

How to manage context?

Depending on your use case, there are 
several things to consider when 
including retrieved content into the 
context window to generate an answer. 
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Technical patterns
Answer Generation: optimisation

Prompt Engineering Few-shot examples Fine-tuning

At each point of the 
process, experiment with 
different prompts to get 
the expected input format 
or generate a relevant 
output.
Try guiding the model if 
the process to get to the 
final outcome contains 
several steps.

If the model doesn’t 
behave as expected, 
provide examples of what 
you want e.g. provide 
example user inputs and 
the expected processing 
format.

If giving a few examples 
isn’t enough, consider 
fine-tuning a model with 
more examples for each 
step of the process: you 
can fine-tune to get a 
specific input processing 
or output format.

How to optimise?

There are a few different 
methods to consider when 
optimising a RAG application.
Try them from left to right, and 
iterate with several of these 
approaches if needed.
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Technical patterns
Answer Generation: safety checks

Why include safety checks?

Just because you provide the model 
with (supposedly) relevant context 
doesn’t mean the answer will 
systematically be truthful or on-point.
Depending on the use case, you 
might want to double-check. 

Example evaluation framework: RAGAS


