
RAG
Technique

February 2024

3

Overview
What we’ll cover

● Technical patterns

● Best practices

● Common pitfalls

● Resources

Retrieval-Augmented Generation
enhances the capabilities of language
models by combining them with a
retrieval system. This allows the model
to leverage external knowledge sources
to generate more accurate and
contextually relevant responses.

Example use cases
- Provide answers with up-to-date

information
- Generate contextual responses

4

What is RAG
Retrieve information to Augment the model’s knowledge and Generate the output

LLM

ask

result
Knowledge

Base / External
sources

search

return information

“What is your
return policy?”

Total refunds: 0-14 days
50% of value vouchers: 14-30 days
$5 discount on next order: > 30 days

“You can get a full refund up
to 14 days after the

purchase, then up to 30 days
you would get a voucher for
half the value of your order”

5

When to use RAG

● Introducing new information to the model

to update its knowledge

● Reducing hallucinations by controlling

content
/!\ Hallucinations can still happen with RAG

Good for ✅ Not good for ❌

● Teaching the model a specific format, style,

or language
➔ Use fine-tuning or custom models instead

● Reducing token usage
➔ Consider fine-tuning depending on the use

case

6

Technical patterns

Data preparation

● Chunking

● Embeddings

● Augmenting
content

Input processing

● Input
augmentation

● NER

● Embeddings

Retrieval

● Search

● Multi-step
retrieval

● Re-ranking

Answer Generation

● Context window

● Optimisation

● Safety checks

7

Technical patterns
Data preparation BEST PRACTICES

Pre-process content for LLM
consumption:
Add summary, headers for each
part, etc.
+ curate relevant data sources

Knowledge
Base

content

chunk documents into multiple
pieces for easier consumption

0.983, 0.123, 0.289…

0.876, 0.145, 0.179…

0.983, 0.123, 0.289…

embeddings

COMMON PITFALLS

➔ Having too much low-quality
content

➔ Having too large documentsAugment content
using LLMs

Ex: parse text only, ask gpt-4 to rephrase &
summarize each part, generate bullet points…

Why chunking?

If your system doesn’t require
entire documents to provide
relevant answers, you can
chunk them into multiple pieces
for easier consumption (reduced
cost & latency).

Other approaches: graphs or
map-reduce

8

Technical patterns
Data preparation: chunking

Things to consider

● Overlap:
○ Should chunks be independent or overlap one

another?
○ If they overlap, by how much?

● Size of chunks:
○ What is the optimal chunk size for my use case?
○ Do I want to include a lot in the context window or

just the minimum?
● Where to chunk:

○ Should I chunk every N tokens or use specific
separators?

○ Is there a logical way to split the context that would
help the retrieval process?

● What to return:
○ Should I return chunks across multiple documents

or top chunks within the same doc?
○ Should chunks be linked together with metadata to

indicate common properties?

What to embed?

Depending on your use case
you might not want just to
embed the text in the
documents but metadata as well
- anything that will make it easier
to surface this specific chunk or
document when performing a
search

9

Technical patterns
Data preparation: embeddings

Examples

Embedding Q&A posts in a forum
You might want to embed the title of the posts,
the text of the original question and the content of
the top answers.
Additionally, if the posts are tagged by topic or
with keywords, you can embed those too.

Embedding product specs
In additional to embedding the text contained in
documents describing the products, you might
want to add metadata that you have on the
product such as the color, size, etc. in your
embeddings.

10

Technical patterns
Data preparation: augmenting content

What does “Augmenting
content” mean?

Augmenting content refers to
modifications of the original content
to make it more digestible for a
system relying on RAG. The
modifications could be a change in
format, wording, or adding
descriptive content such as
summaries or keywords.

Example approaches

Make it a guide*
Reformat the content to look more like
a step-by-step guide with clear
headings and bullet-points, as this
format is more easily understandable
by an LLM.

Multimodality
Leverage models
such as Whisper or
GPT-4V to
transform audio or
visual content into
text.
For example, you
can use GPT-4V to
generate tags for
images or to
describe slides.

Add descriptive metadata*
Consider adding keywords or text that
users might search for when thinking
of a specific product or service.

* GPT-4 can do this for you with the right prompt

keywords

summer

Process input according to task

Q&A
HyDE: Ask LLM to hypothetically answer the
question & use the answer to search the KB

Content search
Prompt LLM to rephrase input & optionally add
more context

DB search
NER: Find relevant entities to be used for a
keyword search or to construct a search query

11

Technical patterns
Input processing BEST PRACTICES

Consider how to transform the
input to match content in the
database
Consider using metadata to
augment the user input

COMMON PITFALLS

➔ Comparing directly the input
to the database without
considering the task
specificities

0.983, 0.123, 0.289…

0.876, 0.145, 0.179…

embeddings

query

SELECT * from items…

red

12

Technical patterns
Input processing: input augmentation

What is input augmentation?

Augmenting the input means turning
it into something different, either
rephrasing it, splitting it in several
inputs or expanding it.
This helps boost performance as
the LLM might understand better
the user intent.

Example approaches

Query
expansion*
Rephrase the
query to be
more
descriptive

Fallback
Consider
implementing a
flow where the LLM
can ask for
clarification when
there is not enough
information in the
original user query
to get a result
(Especially relevant
with tool usage)

Splitting a query in N*
When there is more than 1 question or
intent in a user query, consider
splitting it in several queries

* GPT-4 can do this for you with the right prompt

HyDE*
Hypothetically
answer the
question & use
the answer to
search the KB

13

Technical patterns
Input processing: NER

Why use NER?

Using NER (Named Entity
Recognition) allows to extract
relevant entities from the input, that
can then be used for more
deterministic search queries.
This can be useful when the scope
is very constrained.

Example

Searching for movies
If you have a structured database containing
metadata on movies, you can extract genre,
actors or directors names, etc. from the user
query and use this to search the database

Note: You can use exact values or embeddings after
having extracted the relevant entities

14

Technical patterns
Retrieval BEST PRACTICES

Use a combination of semantic
search and deterministic queries
where possible

+ Cache output where possible

COMMON PITFALLS

➔ The wrong elements could be
compared when looking at
text similarity, that is why
re-ranking is important

INPUT

vector DB

relational /
nosql db

0.983, 0.123, 0.289…

0.876, 0.145, 0.179…

embeddings

query

SELECT * from items…

keywords

summerred

Semantic
search

re-ranking

RESULTS RESULTS

FINAL RESULT

Used to
generate output

15

Technical patterns
Retrieval: search

You can use a hybrid approach and combine several of these.
You can perform multiple searches in parallel or in sequence, or
search for keywords with their embeddings for example.

How to search?

There are many different
approaches to search depending on
the use case and the existing
system.

Semantic search Keyword search Search query

Using embeddings, you
can perform semantic
searches. You can
compare embeddings
with what is in your
database and find the
most similar.

If you have extracted
specific entities or
keywords to search for,
you can search for these
in your database.

Based on the extracted
entities you have or the
user input as is, you can
construct search queries
(SQL, cypher…) and use
these queries to search
your database.

16

Technical patterns
Retrieval: multi-step retrieval

What is multi-step retrieval?

In some cases, there might be
several actions to be performed to
get the required information to
generate an answer.

Things to consider

● Framework to be used:
○ When there are multiple steps to perform,

consider whether you want to handle this
yourself or use a framework to make it easier

● Cost & Latency:
○ Performing multiple steps at the retrieval

stage can increase latency and cost
significantly

○ Consider performing actions in parallel to
reduce latency

● Chain of Thought:
○ Guide the assistant with the chain of thought

approach: break down instructions into
several steps, with clear guidelines on
whether to continue, stop or do something
else.

○ This is more appropriate when tasks need to
be performed sequentially - for example: “if
this didn’t work, then do this”

17

Technical patterns
Retrieval: re-ranking

What is re-ranking?

Re-ranking means re-ordering the
results of the retrieval process to
surface more relevant results.
This is particularly important when
doing semantic searches.

Example approaches

Rule-based re-ranking
You can use metadata to rank results by relevance. For
example, you can look at the recency of the documents, at
tags, specific keywords in the title, etc.

Re-ranking algorithms
There are several existing algorithms/approaches you can use
based on your use case: BERT-based re-rankers,
cross-encoder re-ranking, TF-IDF algorithms…

18

Technical patterns
Answer Generation BEST PRACTICES

Evaluate performance after each
experimentation to assess if it’s
worth exploring other paths
+ Implement guardrails if applicable

COMMON PITFALLS

➔ Going for fine-tuning without
trying other approaches

➔ Not paying attention to the
way the model is prompted

FINAL RESULT

Piece of content
retrieved

LLM
Prompt including

the content

User sees the
final result

19

Technical patterns
Answer Generation: context window

Things to consider

● Context window max size:
○ There is a maximum size, so putting too

much content is not ideal
○ In conversation use cases, the

conversation will be part of the context
as well and will add to that size

● Cost & Latency vs Accuracy:
○ More context results in increased

latency and additional costs since there
will be more input tokens

○ Less context might also result in
decreased accuracy

● “Lost in the middle” problem:
○ When there is too much context, LLMs

tend to forget the text “in the middle” of
the content and might look over some
important information.

How to manage context?

Depending on your use case, there are
several things to consider when
including retrieved content into the
context window to generate an answer.

20

Technical patterns
Answer Generation: optimisation

Prompt Engineering Few-shot examples Fine-tuning

At each point of the
process, experiment with
different prompts to get
the expected input format
or generate a relevant
output.
Try guiding the model if
the process to get to the
final outcome contains
several steps.

If the model doesn’t
behave as expected,
provide examples of what
you want e.g. provide
example user inputs and
the expected processing
format.

If giving a few examples
isn’t enough, consider
fine-tuning a model with
more examples for each
step of the process: you
can fine-tune to get a
specific input processing
or output format.

How to optimise?

There are a few different
methods to consider when
optimising a RAG application.
Try them from left to right, and
iterate with several of these
approaches if needed.

21

Technical patterns
Answer Generation: safety checks

Why include safety checks?

Just because you provide the model
with (supposedly) relevant context
doesn’t mean the answer will
systematically be truthful or on-point.
Depending on the use case, you
might want to double-check.

Example evaluation framework: RAGAS

