
Fine-tuning
Technique

February 2024

3

Overview
What we’ll cover

● When to fine-tune

● Preparing the dataset

● Best practices

● Hyperparameters

● Fine-tuning advances

● Resources

Fine-tuning involves adjusting the
parameters of pre-trained models on a
specific dataset or task. This process
enhances the model's ability to generate
more accurate and relevant responses for
the given context by adapting it to the
nuances and specific requirements of the
task at hand.

Example use cases
- Generate output in a consistent

format
- Process input by following specific

instructions

4

What is Fine-tuning

Public Model
Training data

Training

Fine-tuned
model

Fine-tuning a model consists of training the
model to follow a set of given input/output
examples.

This will teach the model to behave in a
certain way when confronted with a similar
input in the future.

We recommend using 50-100 examples

even if the minimum is 10.

5

When to fine-tune

● Following a given format or tone for the

output

● Processing the input following specific,

complex instructions

● Improving latency

● Reducing token usage

Good for ✅ Not good for ❌

● Teaching the model new knowledge
➔ Use RAG or custom models instead

● Performing well at multiple, unrelated tasks
➔ Do prompt-engineering or create multiple

FT models instead

● Include up-to-date content in responses
➔ Use RAG instead

6

Preparing the dataset

Example format

{
"messages": [

{
"role": "system",
"content": "Marv is a factual chatbot
that is also sarcastic."

},
{
"role": "user",
"content": "What's the capital of
France?"

},
{
"role": "assistant",
"content": "Paris, as if everyone
doesn't know that already."

}
]

}

We recommend using 50-100 examples

even if the minimum is 10.

➔ Take the set of instructions and prompts that you
found worked best for the model prior to fine-tuning.
Include them in every training example

➔ If you would like to shorten the instructions or
prompts, it may take more training examples to arrive
at good results

.jsonl

Best practices

Datasets can be difficult to build, start
small and invest intentionally.
Optimize for fewer high-quality
training examples.

● Consider “prompt baking”, or using a basic
prompt to generate your initial examples

● If your conversations are multi-turn, ensure
your examples are representative

● Collect examples to target issues detected
in evaluation

● Consider the balance & diversity of data
● Make sure your examples contain all the

information needed in the response

Curate examples carefully

Iterate on hyperparameters

Start with the defaults and adjust
based on performance.

● If the model does not appear to converge,
increase the learning rate multiplier

● If the model does not follow the training
data as much as expected increase the
number of epochs

● If the model becomes less diverse than
expected decrease the # of epochs by 1-2

Often users start with a
zero-shot or few-shot prompt to
build a baseline evaluation
before graduating to fine-tuning.

Establish a baseline

Often users start with a
zero-shot or few-shot prompt to
build a baseline evaluation
before graduating to fine-tuning.

When using GPT-4, once you
have a baseline evaluation and
training examples consider
fine-tuning 3.5 to get similar
performance for less cost and
latency.

Experiment with reducing or
removing system instructions
with subsequent fine-tuned
model versions.

Optimize for latency and
token efficiency

Automate your feedback
pipeline

Introduce automated evaluations to
highlight potential problem cases to
clean up and use as training data.

Consider the G-Eval approach of
using GPT-4 to perform automated
testing using a scorecard.

8

Hyperparameters

Epochs default: auto (standard is 4)

Refers to 1 full cycle through the training dataset
If you have hundreds of thousands of examples, we would recommend
experimenting with two epochs (or one) to avoid overfitting.

Batch size default: ~0.2% x N* (max 256)

Number of training examples used to train a single
forward & backward pass
In general, we've found that larger batch sizes tend to work better for larger datasets

Learning rate multiplier default: 0.05, 0.1 or 0.2*

Scaling factor for the original learning rate
We recommend experimenting with values between 0.02-0.2. We've found that
larger learning rates often perform better with larger batch sizes.

*N = number of training examples

*depends on final batch size

