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Overview
What we’ll cover

● When to fine-tune

● Preparing the dataset

● Best practices

● Hyperparameters

● Fine-tuning advances

● Resources

Fine-tuning involves adjusting the 
parameters of pre-trained models on a 
specific dataset or task. This process 
enhances the model's ability to generate 
more accurate and relevant responses for 
the given context by adapting it to the 
nuances and specific requirements of the 
task at hand.

Example use cases
- Generate output in a consistent 

format
- Process input by following specific 

instructions
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What is Fine-tuning

Public Model
Training data

Training

Fine-tuned 
model

Fine-tuning a model consists of training the 
model to follow a set of given input/output 
examples.

This will teach the model to behave in a 
certain way when confronted with a similar 
input in the future.

We recommend using 50-100 examples 

even if the minimum is 10.
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When to fine-tune

● Following a given format or tone for the 

output

● Processing the input following specific, 

complex instructions

● Improving latency

● Reducing token usage

Good for  ✅ Not good for  ❌

● Teaching the model new knowledge
➔ Use RAG or custom models instead

● Performing well at multiple, unrelated tasks
➔ Do prompt-engineering or create multiple 

FT models instead

● Include up-to-date content in responses
➔ Use RAG instead
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Preparing the dataset

Example format

{
"messages": [

{
"role": "system",
"content": "Marv is a factual chatbot 
that is also sarcastic."

},
{
"role": "user",
"content": "What's the capital of 
France?"

},
{
"role": "assistant",
"content": "Paris, as if everyone 
doesn't know that already."

}
]

}

We recommend using 50-100 examples 

even if the minimum is 10.

➔ Take the set of instructions and prompts that you 
found worked best for the model prior to fine-tuning. 
Include them in every training example

➔ If you would like to shorten the instructions or 
prompts, it may take more training examples to arrive 
at good results

.jsonl



Best practices

Datasets can be difficult to build, start 
small and invest intentionally. 
Optimize for fewer high-quality 
training examples.

● Consider “prompt baking”, or using a basic 
prompt to generate your initial examples

● If your conversations are multi-turn, ensure 
your examples are representative

● Collect examples to target issues detected 
in evaluation

● Consider the balance & diversity of data
● Make sure your examples contain all the 

information needed in the response

Curate examples carefully

Iterate on hyperparameters

Start with the defaults and adjust 
based on performance.

● If the model does not appear to converge, 
increase the learning rate multiplier

● If the model does not follow the training 
data as much as expected increase the 
number of epochs

● If the model becomes less diverse than 
expected decrease the # of epochs by 1-2

Often users start with a 
zero-shot or few-shot prompt to 
build a baseline evaluation 
before graduating to fine-tuning.

Establish a baseline

Often users start with a 
zero-shot or few-shot prompt to 
build a baseline evaluation 
before graduating to fine-tuning.

When using GPT-4, once you 
have a baseline evaluation and 
training examples consider 
fine-tuning 3.5 to get similar 
performance for less cost and 
latency.

Experiment with reducing or 
removing system instructions 
with subsequent fine-tuned 
model versions.

Optimize for latency and 
token efficiency

Automate your feedback 
pipeline

Introduce automated evaluations to 
highlight potential problem cases to 
clean up and use as training data.

Consider the G-Eval approach of 
using GPT-4 to perform automated 
testing using a scorecard.
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Hyperparameters

Epochs default: auto (standard is 4)

Refers to 1 full cycle through the training dataset
If you have hundreds of thousands of examples, we would recommend 
experimenting with two epochs (or one) to avoid overfitting.

Batch size default: ~0.2% x N* (max 256)

Number of training examples used to train a single 
forward & backward pass
In general, we've found that larger batch sizes tend to work better for larger datasets

Learning rate multiplier default: 0.05, 0.1 or 0.2*

Scaling factor for the original learning rate
We recommend experimenting with values between 0.02-0.2. We've found that 
larger learning rates often perform better with larger batch sizes.

*N = number of training examples

*depends on final batch size


