{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Code search\n", "\n", "We index our own openai-python code repository, and show how it can be searched. We implement a simple version of file parsing and extracting of functions from python files." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Total number of py files: 40\n", "Total number of functions extracted: 64\n" ] } ], "source": [ "import os\n", "from glob import glob\n", "import pandas as pd\n", "\n", "def get_function_name(code):\n", " \"\"\"\n", " Extract function name from a line beginning with \"def \"\n", " \"\"\"\n", " assert code.startswith(\"def \")\n", " return code[len(\"def \"): code.index(\"(\")]\n", "\n", "def get_until_no_space(all_lines, i) -> str:\n", " \"\"\"\n", " Get all lines until a line outside the function definition is found.\n", " \"\"\"\n", " ret = [all_lines[i]]\n", " for j in range(i + 1, i + 10000):\n", " if j < len(all_lines):\n", " if len(all_lines[j]) == 0 or all_lines[j][0] in [\" \", \"\\t\", \")\"]:\n", " ret.append(all_lines[j])\n", " else:\n", " break\n", " return \"\\n\".join(ret)\n", "\n", "def get_functions(filepath):\n", " \"\"\"\n", " Get all functions in a Python file.\n", " \"\"\"\n", " whole_code = open(filepath).read().replace(\"\\r\", \"\\n\")\n", " all_lines = whole_code.split(\"\\n\")\n", " for i, l in enumerate(all_lines):\n", " if l.startswith(\"def \"):\n", " code = get_until_no_space(all_lines, i)\n", " function_name = get_function_name(code)\n", " yield {\"code\": code, \"function_name\": function_name, \"filepath\": filepath}\n", "\n", "\n", "# get user root directory\n", "root_dir = os.path.expanduser(\"~\")\n", "\n", "# path to code repository directory\n", "code_root = root_dir + \"/openai-python\"\n", "code_files = [y for x in os.walk(code_root) for y in glob(os.path.join(x[0], '*.py'))]\n", "print(\"Total number of py files:\", len(code_files))\n", "all_funcs = []\n", "for code_file in code_files:\n", " funcs = list(get_functions(code_file))\n", " for func in funcs:\n", " all_funcs.append(func)\n", "\n", "print(\"Total number of functions extracted:\", len(all_funcs))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For code search models we use code-search-{model}-code to obtain embeddings for code snippets, and code-search-{model}-text to embed natural language queries." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
codefunction_namefilepathcode_embedding
0def semantic_search(engine, query, documents):...semantic_search/examples/semanticsearch/semanticsearch.py[-0.038976121693849564, -0.0031428150832653046...
1def main():\\n parser = argparse.ArgumentPar...main/examples/semanticsearch/semanticsearch.py[-0.024289356544613838, -0.017748363316059113,...
2def get_candidates(\\n prompt: str,\\n sto...get_candidates/examples/codex/backtranslation.py[-0.04161201789975166, -0.0169310811907053, 0....
3def rindex(lst: List, value: str) -> int:\\n ...rindex/examples/codex/backtranslation.py[-0.027255680412054062, -0.007931121625006199,...
4def eval_candidate(\\n candidate_answer: str...eval_candidate/examples/codex/backtranslation.py[-0.00999179296195507, -0.01640152558684349, 0...
\n", "
" ], "text/plain": [ " code function_name \\\n", "0 def semantic_search(engine, query, documents):... semantic_search \n", "1 def main():\\n parser = argparse.ArgumentPar... main \n", "2 def get_candidates(\\n prompt: str,\\n sto... get_candidates \n", "3 def rindex(lst: List, value: str) -> int:\\n ... rindex \n", "4 def eval_candidate(\\n candidate_answer: str... eval_candidate \n", "\n", " filepath \\\n", "0 /examples/semanticsearch/semanticsearch.py \n", "1 /examples/semanticsearch/semanticsearch.py \n", "2 /examples/codex/backtranslation.py \n", "3 /examples/codex/backtranslation.py \n", "4 /examples/codex/backtranslation.py \n", "\n", " code_embedding \n", "0 [-0.038976121693849564, -0.0031428150832653046... \n", "1 [-0.024289356544613838, -0.017748363316059113,... \n", "2 [-0.04161201789975166, -0.0169310811907053, 0.... \n", "3 [-0.027255680412054062, -0.007931121625006199,... \n", "4 [-0.00999179296195507, -0.01640152558684349, 0... " ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from openai.embeddings_utils import get_embedding\n", "\n", "df = pd.DataFrame(all_funcs)\n", "df['code_embedding'] = df['code'].apply(lambda x: get_embedding(x, engine='code-search-babbage-code-001'))\n", "df['filepath'] = df['filepath'].apply(lambda x: x.replace(code_root, \"\"))\n", "df.to_csv(\"output/code_search_openai-python.csv\", index=False)\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/openai/tests/test_endpoints.py:test_completions_multiple_prompts score=0.681\n", "def test_completions_multiple_prompts():\n", " result = openai.Completion.create(\n", " prompt=[\"This was a test\", \"This was another test\"], n=5, engine=\"ada\"\n", " )\n", " assert len(result.choices) == 10\n", "\n", "----------------------------------------------------------------------\n", "/openai/tests/test_endpoints.py:test_completions score=0.675\n", "def test_completions():\n", " result = openai.Completion.create(prompt=\"This was a test\", n=5, engine=\"ada\")\n", " assert len(result.choices) == 5\n", "\n", "\n", "----------------------------------------------------------------------\n", "/openai/tests/test_api_requestor.py:test_requestor_sets_request_id score=0.635\n", "def test_requestor_sets_request_id(mocker: MockerFixture) -> None:\n", " # Fake out 'requests' and confirm that the X-Request-Id header is set.\n", "\n", " got_headers = {}\n", "\n", " def fake_request(self, *args, **kwargs):\n", " nonlocal got_headers\n", "----------------------------------------------------------------------\n" ] } ], "source": [ "from openai.embeddings_utils import cosine_similarity\n", "\n", "def search_functions(df, code_query, n=3, pprint=True, n_lines=7):\n", " embedding = get_embedding(code_query, engine='code-search-babbage-text-001')\n", " df['similarities'] = df.code_embedding.apply(lambda x: cosine_similarity(x, embedding))\n", "\n", " res = df.sort_values('similarities', ascending=False).head(n)\n", " if pprint:\n", " for r in res.iterrows():\n", " print(r[1].filepath+\":\"+r[1].function_name + \" score=\" + str(round(r[1].similarities, 3)))\n", " print(\"\\n\".join(r[1].code.split(\"\\n\")[:n_lines]))\n", " print('-'*70)\n", " return res\n", "res = search_functions(df, 'Completions API tests', n=3)\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/openai/validators.py:format_inferrer_validator score=0.655\n", "def format_inferrer_validator(df):\n", " \"\"\"\n", " This validator will infer the likely fine-tuning format of the data, and display it to the user if it is classification.\n", " It will also suggest to use ada and explain train/validation split benefits.\n", " \"\"\"\n", " ft_type = infer_task_type(df)\n", " immediate_msg = None\n", "----------------------------------------------------------------------\n", "/openai/validators.py:long_examples_validator score=0.649\n", "def long_examples_validator(df):\n", " \"\"\"\n", " This validator will suggest to the user to remove examples that are too long.\n", " \"\"\"\n", " immediate_msg = None\n", " optional_msg = None\n", " optional_fn = None\n", "----------------------------------------------------------------------\n", "/openai/validators.py:non_empty_completion_validator score=0.646\n", "def non_empty_completion_validator(df):\n", " \"\"\"\n", " This validator will ensure that no completion is empty.\n", " \"\"\"\n", " necessary_msg = None\n", " necessary_fn = None\n", " immediate_msg = None\n", "----------------------------------------------------------------------\n" ] } ], "source": [ "res = search_functions(df, 'fine-tuning input data validation logic', n=3)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/openai/validators.py:common_completion_suffix_validator score=0.665\n", "def common_completion_suffix_validator(df):\n", " \"\"\"\n", " This validator will suggest to add a common suffix to the completion if one doesn't already exist in case of classification or conditional generation.\n", " \"\"\"\n", " error_msg = None\n", " immediate_msg = None\n", " optional_msg = None\n", " optional_fn = None\n", "\n", " ft_type = infer_task_type(df)\n", "----------------------------------------------------------------------\n", "/openai/validators.py:get_outfnames score=0.66\n", "def get_outfnames(fname, split):\n", " suffixes = [\"_train\", \"_valid\"] if split else [\"\"]\n", " i = 0\n", " while True:\n", " index_suffix = f\" ({i})\" if i > 0 else \"\"\n", " candidate_fnames = [\n", " fname.split(\".\")[0] + \"_prepared\" + suffix + index_suffix + \".jsonl\"\n", " for suffix in suffixes\n", " ]\n", " if not any(os.path.isfile(f) for f in candidate_fnames):\n", "----------------------------------------------------------------------\n" ] } ], "source": [ "res = search_functions(df, 'find common suffix', n=2, n_lines=10)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/openai/cli.py:tools_register score=0.651\n", "def tools_register(parser):\n", " subparsers = parser.add_subparsers(\n", " title=\"Tools\", help=\"Convenience client side tools\"\n", " )\n", "\n", " def help(args):\n", " parser.print_help()\n", "\n", " parser.set_defaults(func=help)\n", "\n", " sub = subparsers.add_parser(\"fine_tunes.prepare_data\")\n", " sub.add_argument(\n", " \"-f\",\n", " \"--file\",\n", " required=True,\n", " help=\"JSONL, JSON, CSV, TSV, TXT or XLSX file containing prompt-completion examples to be analyzed.\"\n", " \"This should be the local file path.\",\n", " )\n", " sub.add_argument(\n", " \"-q\",\n", "----------------------------------------------------------------------\n" ] } ], "source": [ "res = search_functions(df, 'Command line interface for fine-tuning', n=1, n_lines=20)" ] } ], "metadata": { "interpreter": { "hash": "be4b5d5b73a21c599de40d6deb1129796d12dc1cc33a738f7bac13269cfcafe8" }, "kernelspec": { "display_name": "Python 3.7.3 64-bit ('base': conda)", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }