import openai from termcolor import colored import streamlit as st from database import get_redis_connection,get_redis_results from config import CHAT_MODEL,COMPLETIONS_MODEL, INDEX_NAME redis_client = get_redis_connection() # A basic class to create a message as a dict for chat class Message: def __init__(self,role,content): self.role = role self.content = content def message(self): return {"role": self.role,"content": self.content} # New Assistant class to add a vector database call to its responses class RetrievalAssistant: def __init__(self): self.conversation_history = [] def _get_assistant_response(self, prompt): try: completion = openai.ChatCompletion.create( model=CHAT_MODEL, messages=prompt, temperature=0.1 ) response_message = Message(completion['choices'][0]['message']['role'],completion['choices'][0]['message']['content']) return response_message.message() except Exception as e: return f'Request failed with exception {e}' # The function to retrieve Redis search results def _get_search_results(self,prompt): latest_question = prompt search_content = get_redis_results(redis_client,latest_question,INDEX_NAME)['result'][0] return search_content def ask_assistant(self, next_user_prompt): [self.conversation_history.append(x) for x in next_user_prompt] assistant_response = self._get_assistant_response(self.conversation_history) # Answer normally unless the trigger sequence is used "searching_for_answers" if 'searching for answers' in assistant_response['content'].lower(): question_extract = openai.Completion.create(model=COMPLETIONS_MODEL,prompt=f"Extract the user's latest question and the year for that question from this conversation: {self.conversation_history}. Extract it as a sentence stating the Question and Year") search_result = self._get_search_results(question_extract['choices'][0]['text']) # We insert an extra system prompt here to give fresh context to the Chatbot on how to use the Redis results # In this instance we add it to the conversation history, but in production it may be better to hide self.conversation_history.insert(-1,{"role": 'system',"content": f"Answer the user's question using this content: {search_result}. If you cannot answer the question, say 'Sorry, I don't know the answer to this one'"}) assistant_response = self._get_assistant_response(self.conversation_history) self.conversation_history.append(assistant_response) return assistant_response else: self.conversation_history.append(assistant_response) return assistant_response def pretty_print_conversation_history(self, colorize_assistant_replies=True): for entry in self.conversation_history: if entry['role'] == 'system': pass else: prefix = entry['role'] content = entry['content'] output = colored(prefix +':\n' + content, 'green') if colorize_assistant_replies and entry['role'] == 'assistant' else prefix +':\n' + content #prefix = entry['role'] print(output)