{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Azure embeddings example\n", "\n", "This example will cover embeddings using the Azure OpenAI service." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setup\n", "\n", "First, we install the necessary dependencies and import the libraries we will be using." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "! pip install \"openai>=1.0.0,<2.0.0\"\n", "! pip install python-dotenv" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "import openai\n", "import dotenv\n", "\n", "dotenv.load_dotenv()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Authentication\n", "\n", "The Azure OpenAI service supports multiple authentication mechanisms that include API keys and Azure Active Directory token credentials." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "use_azure_active_directory = False # Set this flag to True if you are using Azure Active Directory" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Authentication using API key\n", "\n", "To set up the OpenAI SDK to use an *Azure API Key*, we need to set `api_key` to a key associated with your endpoint (you can find this key in *\"Keys and Endpoints\"* under *\"Resource Management\"* in the [Azure Portal](https://portal.azure.com)). You'll also find the endpoint for your resource here." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "if not use_azure_active_directory:\n", " endpoint = os.environ[\"AZURE_OPENAI_ENDPOINT\"]\n", " api_key = os.environ[\"AZURE_OPENAI_API_KEY\"]\n", "\n", " client = openai.AzureOpenAI(\n", " azure_endpoint=endpoint,\n", " api_key=api_key,\n", " api_version=\"2023-09-01-preview\"\n", " )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Authentication using Azure Active Directory\n", "Let's now see how we can autheticate via Azure Active Directory. We'll start by installing the `azure-identity` library. This library will provide the token credentials we need to authenticate and help us build a token credential provider through the `get_bearer_token_provider` helper function. It's recommended to use `get_bearer_token_provider` over providing a static token to `AzureOpenAI` because this API will automatically cache and refresh tokens for you. \n", "\n", "For more information on how to set up Azure Active Directory authentication with Azure OpenAI, see the [documentation](https://learn.microsoft.com/azure/ai-services/openai/how-to/managed-identity)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "! pip install \"azure-identity>=1.15.0\"" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "from azure.identity import DefaultAzureCredential, get_bearer_token_provider\n", "\n", "if use_azure_active_directory:\n", " endpoint = os.environ[\"AZURE_OPENAI_ENDPOINT\"]\n", " api_key = os.environ[\"AZURE_OPENAI_API_KEY\"]\n", "\n", " client = openai.AzureOpenAI(\n", " azure_endpoint=endpoint,\n", " azure_ad_token_provider=get_bearer_token_provider(DefaultAzureCredential(), \"https://cognitiveservices.azure.com/.default\"),\n", " api_version=\"2023-09-01-preview\"\n", " )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "> Note: the AzureOpenAI infers the following arguments from their corresponding environment variables if they are not provided:\n", "\n", "- `api_key` from `AZURE_OPENAI_API_KEY`\n", "- `azure_ad_token` from `AZURE_OPENAI_AD_TOKEN`\n", "- `api_version` from `OPENAI_API_VERSION`\n", "- `azure_endpoint` from `AZURE_OPENAI_ENDPOINT`\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Deployments\n", "\n", "In this section we are going to create a deployment of a model that we can use to create embeddings." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Deployments: Create in the Azure OpenAI Studio\n", "Let's deploy a model to use with embeddings. Go to https://portal.azure.com, find your Azure OpenAI resource, and then navigate to the Azure OpenAI Studio. Click on the \"Deployments\" tab and then create a deployment for the model you want to use for embeddings. The deployment name that you give the model will be used in the code below." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "deployment = \"\" # Fill in the deployment name from the portal here" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Embeddings\n", "\n", "Now let's create embeddings using the client we built." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "embeddings = client.embeddings.create(\n", " model=deployment,\n", " input=\"The food was delicious and the waiter...\"\n", ")\n", " \n", "print(embeddings)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.0" }, "vscode": { "interpreter": { "hash": "3a5103089ab7e7c666b279eeded403fcec76de49a40685dbdfe9f9c78ad97c17" } } }, "nbformat": 4, "nbformat_minor": 2 }