{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# How to count tokens with tiktoken\n", "\n", "[`tiktoken`](https://github.com/openai/tiktoken/blob/main/README.md) is a fast open-source tokenizer by OpenAI.\n", "\n", "Given a text string (e.g., `\"tiktoken is great!\"`) and an encoding (e.g., `\"cl100k_base\"`), a tokenizer can split the text string into a list of tokens (e.g., `[\"t\", \"ik\", \"token\", \" is\", \" great\", \"!\"]`).\n", "\n", "Splitting text strings into tokens is useful because GPT models see text in the form of tokens. Knowing how many tokens are in a text string can tell you (a) whether the string is too long for a text model to process and (b) how much an OpenAI API call costs (as usage is priced by token).\n", "\n", "\n", "## Encodings\n", "\n", "Encodings specify how text is converted into tokens. Different models use different encodings.\n", "\n", "`tiktoken` supports three encodings used by OpenAI models:\n", "\n", "| Encoding name | OpenAI models |\n", "|-------------------------|-----------------------------------------------------|\n", "| `cl100k_base` | `gpt-4`, `gpt-3.5-turbo`, `text-embedding-ada-002` |\n", "| `p50k_base` | Codex models, `text-davinci-002`, `text-davinci-003`|\n", "| `r50k_base` (or `gpt2`) | GPT-3 models like `davinci` |\n", "\n", "You can retrieve the encoding for a model using `tiktoken.encoding_for_model()` as follows:\n", "```python\n", "encoding = tiktoken.encoding_for_model('gpt-3.5-turbo')\n", "```\n", "\n", "Note that `p50k_base` overlaps substantially with `r50k_base`, and for non-code applications, they will usually give the same tokens.\n", "\n", "## Tokenizer libraries by language\n", "\n", "For `cl100k_base` and `p50k_base` encodings:\n", "- Python: [tiktoken](https://github.com/openai/tiktoken/blob/main/README.md)\n", "- .NET / C#: [SharpToken](https://github.com/dmitry-brazhenko/SharpToken), [TiktokenSharp](https://github.com/aiqinxuancai/TiktokenSharp)\n", "- Java: [jtokkit](https://github.com/knuddelsgmbh/jtokkit)\n", "- Golang: [tiktoken-go](https://github.com/pkoukk/tiktoken-go)\n", "- Rust: [tiktoken-rs](https://github.com/zurawiki/tiktoken-rs)\n", "\n", "For `r50k_base` (`gpt2`) encodings, tokenizers are available in many languages.\n", "- Python: [tiktoken](https://github.com/openai/tiktoken/blob/main/README.md) (or alternatively [GPT2TokenizerFast](https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2TokenizerFast))\n", "- JavaScript: [gpt-3-encoder](https://www.npmjs.com/package/gpt-3-encoder)\n", "- .NET / C#: [GPT Tokenizer](https://github.com/dluc/openai-tools)\n", "- Java: [gpt2-tokenizer-java](https://github.com/hyunwoongko/gpt2-tokenizer-java)\n", "- PHP: [GPT-3-Encoder-PHP](https://github.com/CodeRevolutionPlugins/GPT-3-Encoder-PHP)\n", "- Golang: [tiktoken-go](https://github.com/pkoukk/tiktoken-go)\n", "- Rust: [tiktoken-rs](https://github.com/zurawiki/tiktoken-rs)\n", "\n", "(OpenAI makes no endorsements or guarantees of third-party libraries.)\n", "\n", "\n", "## How strings are typically tokenized\n", "\n", "In English, tokens commonly range in length from one character to one word (e.g., `\"t\"` or `\" great\"`), though in some languages tokens can be shorter than one character or longer than one word. Spaces are usually grouped with the starts of words (e.g., `\" is\"` instead of `\"is \"` or `\" \"`+`\"is\"`). You can quickly check how a string is tokenized at the [OpenAI Tokenizer](https://beta.openai.com/tokenizer), or the third-party [Tiktokenizer](https://tiktokenizer.vercel.app/) webapp." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## 0. Install `tiktoken`\n", "\n", "If needed, install `tiktoken` with `pip`:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%pip install --upgrade tiktoken\n", "%pip install --upgrade openai" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Import `tiktoken`" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import tiktoken" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Load an encoding\n", "\n", "Use `tiktoken.get_encoding()` to load an encoding by name.\n", "\n", "The first time this runs, it will require an internet connection to download. Later runs won't need an internet connection." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "encoding = tiktoken.get_encoding(\"cl100k_base\")\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Use `tiktoken.encoding_for_model()` to automatically load the correct encoding for a given model name." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "encoding = tiktoken.encoding_for_model(\"gpt-3.5-turbo\")" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## 3. Turn text into tokens with `encoding.encode()`\n", "\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "The `.encode()` method converts a text string into a list of token integers." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[83, 1609, 5963, 374, 2294, 0]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "encoding.encode(\"tiktoken is great!\")\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Count tokens by counting the length of the list returned by `.encode()`." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "def num_tokens_from_string(string: str, encoding_name: str) -> int:\n", " \"\"\"Returns the number of tokens in a text string.\"\"\"\n", " encoding = tiktoken.get_encoding(encoding_name)\n", " num_tokens = len(encoding.encode(string))\n", " return num_tokens\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "6" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "num_tokens_from_string(\"tiktoken is great!\", \"cl100k_base\")\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## 4. Turn tokens into text with `encoding.decode()`" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "`.decode()` converts a list of token integers to a string." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'tiktoken is great!'" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "encoding.decode([83, 1609, 5963, 374, 2294, 0])\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Warning: although `.decode()` can be applied to single tokens, beware that it can be lossy for tokens that aren't on utf-8 boundaries." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "For single tokens, `.decode_single_token_bytes()` safely converts a single integer token to the bytes it represents." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[b't', b'ik', b'token', b' is', b' great', b'!']" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[encoding.decode_single_token_bytes(token) for token in [83, 1609, 5963, 374, 2294, 0]]\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "(The `b` in front of the strings indicates that the strings are byte strings.)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## 5. Comparing encodings\n", "\n", "Different encodings vary in how they split words, group spaces, and handle non-English characters. Using the methods above, we can compare different encodings on a few example strings." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "def compare_encodings(example_string: str) -> None:\n", " \"\"\"Prints a comparison of three string encodings.\"\"\"\n", " # print the example string\n", " print(f'\\nExample string: \"{example_string}\"')\n", " # for each encoding, print the # of tokens, the token integers, and the token bytes\n", " for encoding_name in [\"r50k_base\", \"p50k_base\", \"cl100k_base\"]:\n", " encoding = tiktoken.get_encoding(encoding_name)\n", " token_integers = encoding.encode(example_string)\n", " num_tokens = len(token_integers)\n", " token_bytes = [encoding.decode_single_token_bytes(token) for token in token_integers]\n", " print()\n", " print(f\"{encoding_name}: {num_tokens} tokens\")\n", " print(f\"token integers: {token_integers}\")\n", " print(f\"token bytes: {token_bytes}\")\n", " " ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Example string: \"antidisestablishmentarianism\"\n", "\n", "r50k_base: 5 tokens\n", "token integers: [415, 29207, 44390, 3699, 1042]\n", "token bytes: [b'ant', b'idis', b'establishment', b'arian', b'ism']\n", "\n", "p50k_base: 5 tokens\n", "token integers: [415, 29207, 44390, 3699, 1042]\n", "token bytes: [b'ant', b'idis', b'establishment', b'arian', b'ism']\n", "\n", "cl100k_base: 6 tokens\n", "token integers: [519, 85342, 34500, 479, 8997, 2191]\n", "token bytes: [b'ant', b'idis', b'establish', b'ment', b'arian', b'ism']\n" ] } ], "source": [ "compare_encodings(\"antidisestablishmentarianism\")\n" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Example string: \"2 + 2 = 4\"\n", "\n", "r50k_base: 5 tokens\n", "token integers: [17, 1343, 362, 796, 604]\n", "token bytes: [b'2', b' +', b' 2', b' =', b' 4']\n", "\n", "p50k_base: 5 tokens\n", "token integers: [17, 1343, 362, 796, 604]\n", "token bytes: [b'2', b' +', b' 2', b' =', b' 4']\n", "\n", "cl100k_base: 7 tokens\n", "token integers: [17, 489, 220, 17, 284, 220, 19]\n", "token bytes: [b'2', b' +', b' ', b'2', b' =', b' ', b'4']\n" ] } ], "source": [ "compare_encodings(\"2 + 2 = 4\")\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Example string: \"お誕生日おめでとう\"\n", "\n", "r50k_base: 14 tokens\n", "token integers: [2515, 232, 45739, 243, 37955, 33768, 98, 2515, 232, 1792, 223, 30640, 30201, 29557]\n", "token bytes: [b'\\xe3\\x81', b'\\x8a', b'\\xe8\\xaa', b'\\x95', b'\\xe7\\x94\\x9f', b'\\xe6\\x97', b'\\xa5', b'\\xe3\\x81', b'\\x8a', b'\\xe3\\x82', b'\\x81', b'\\xe3\\x81\\xa7', b'\\xe3\\x81\\xa8', b'\\xe3\\x81\\x86']\n", "\n", "p50k_base: 14 tokens\n", "token integers: [2515, 232, 45739, 243, 37955, 33768, 98, 2515, 232, 1792, 223, 30640, 30201, 29557]\n", "token bytes: [b'\\xe3\\x81', b'\\x8a', b'\\xe8\\xaa', b'\\x95', b'\\xe7\\x94\\x9f', b'\\xe6\\x97', b'\\xa5', b'\\xe3\\x81', b'\\x8a', b'\\xe3\\x82', b'\\x81', b'\\xe3\\x81\\xa7', b'\\xe3\\x81\\xa8', b'\\xe3\\x81\\x86']\n", "\n", "cl100k_base: 9 tokens\n", "token integers: [33334, 45918, 243, 21990, 9080, 33334, 62004, 16556, 78699]\n", "token bytes: [b'\\xe3\\x81\\x8a', b'\\xe8\\xaa', b'\\x95', b'\\xe7\\x94\\x9f', b'\\xe6\\x97\\xa5', b'\\xe3\\x81\\x8a', b'\\xe3\\x82\\x81', b'\\xe3\\x81\\xa7', b'\\xe3\\x81\\xa8\\xe3\\x81\\x86']\n" ] } ], "source": [ "compare_encodings(\"お誕生日おめでとう\")\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## 6. Counting tokens for chat completions API calls\n", "\n", "ChatGPT models like `gpt-3.5-turbo` and `gpt-4` use tokens in the same way as older completions models, but because of their message-based formatting, it's more difficult to count how many tokens will be used by a conversation.\n", "\n", "Below is an example function for counting tokens for messages passed to `gpt-3.5-turbo` or `gpt-4`.\n", "\n", "Note that the exact way that tokens are counted from messages may change from model to model. Consider the counts from the function below an estimate, not a timeless guarantee.\n", "\n", "In particular, requests that use the optional functions input will consume extra tokens on top of the estimates calculated below." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def num_tokens_from_messages(messages, model=\"gpt-3.5-turbo-0613\"):\n", " \"\"\"Return the number of tokens used by a list of messages.\"\"\"\n", " try:\n", " encoding = tiktoken.encoding_for_model(model)\n", " except KeyError:\n", " print(\"Warning: model not found. Using cl100k_base encoding.\")\n", " encoding = tiktoken.get_encoding(\"cl100k_base\")\n", " if model in {\n", " \"gpt-3.5-turbo-0613\",\n", " \"gpt-3.5-turbo-16k-0613\",\n", " \"gpt-4-0314\",\n", " \"gpt-4-32k-0314\",\n", " \"gpt-4-0613\",\n", " \"gpt-4-32k-0613\",\n", " }:\n", " tokens_per_message = 3\n", " tokens_per_name = 1\n", " elif model == \"gpt-3.5-turbo-0301\":\n", " tokens_per_message = 4 # every message follows <|start|>{role/name}\\n{content}<|end|>\\n\n", " tokens_per_name = -1 # if there's a name, the role is omitted\n", " elif \"gpt-3.5-turbo\" in model:\n", " print(\"Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613.\")\n", " return num_tokens_from_messages(messages, model=\"gpt-3.5-turbo-0613\")\n", " elif \"gpt-4\" in model:\n", " print(\"Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.\")\n", " return num_tokens_from_messages(messages, model=\"gpt-4-0613\")\n", " else:\n", " raise NotImplementedError(\n", " f\"\"\"num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.\"\"\"\n", " )\n", " num_tokens = 0\n", " for message in messages:\n", " num_tokens += tokens_per_message\n", " for key, value in message.items():\n", " num_tokens += len(encoding.encode(value))\n", " if key == \"name\":\n", " num_tokens += tokens_per_name\n", " num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>\n", " return num_tokens\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "gpt-3.5-turbo-0301\n", "127 prompt tokens counted by num_tokens_from_messages().\n", "127 prompt tokens counted by the OpenAI API.\n", "\n", "gpt-3.5-turbo-0613\n", "129 prompt tokens counted by num_tokens_from_messages().\n", "129 prompt tokens counted by the OpenAI API.\n", "\n", "gpt-3.5-turbo\n", "Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613.\n", "129 prompt tokens counted by num_tokens_from_messages().\n", "129 prompt tokens counted by the OpenAI API.\n", "\n", "gpt-4-0314\n", "129 prompt tokens counted by num_tokens_from_messages().\n", "129 prompt tokens counted by the OpenAI API.\n", "\n", "gpt-4-0613\n", "129 prompt tokens counted by num_tokens_from_messages().\n", "129 prompt tokens counted by the OpenAI API.\n", "\n", "gpt-4\n", "Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.\n", "129 prompt tokens counted by num_tokens_from_messages().\n", "129 prompt tokens counted by the OpenAI API.\n", "\n" ] } ], "source": [ "# let's verify the function above matches the OpenAI API response\n", "\n", "from openai import OpenAI\n", "import os\n", "\n", "client = OpenAI(api_key=os.environ.get(\"OPENAI_API_KEY\", \"\"))\n", "\n", "example_messages = [\n", " {\n", " \"role\": \"system\",\n", " \"content\": \"You are a helpful, pattern-following assistant that translates corporate jargon into plain English.\",\n", " },\n", " {\n", " \"role\": \"system\",\n", " \"name\": \"example_user\",\n", " \"content\": \"New synergies will help drive top-line growth.\",\n", " },\n", " {\n", " \"role\": \"system\",\n", " \"name\": \"example_assistant\",\n", " \"content\": \"Things working well together will increase revenue.\",\n", " },\n", " {\n", " \"role\": \"system\",\n", " \"name\": \"example_user\",\n", " \"content\": \"Let's circle back when we have more bandwidth to touch base on opportunities for increased leverage.\",\n", " },\n", " {\n", " \"role\": \"system\",\n", " \"name\": \"example_assistant\",\n", " \"content\": \"Let's talk later when we're less busy about how to do better.\",\n", " },\n", " {\n", " \"role\": \"user\",\n", " \"content\": \"This late pivot means we don't have time to boil the ocean for the client deliverable.\",\n", " },\n", "]\n", "\n", "for model in [\n", " \"gpt-3.5-turbo-0301\",\n", " \"gpt-3.5-turbo-0613\",\n", " \"gpt-3.5-turbo\",\n", " \"gpt-4-0314\",\n", " \"gpt-4-0613\",\n", " \"gpt-4\",\n", " ]:\n", " print(model)\n", " # example token count from the function defined above\n", " print(f\"{num_tokens_from_messages(example_messages, model)} prompt tokens counted by num_tokens_from_messages().\")\n", " # example token count from the OpenAI API\n", " response = client.chat.completions.create(model=model,\n", " messages=example_messages,\n", " temperature=0,\n", " max_tokens=1)\n", " print(f'{response.usage.prompt_tokens} prompt tokens counted by the OpenAI API.')\n", " print()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" }, "vscode": { "interpreter": { "hash": "365536dcbde60510dc9073d6b991cd35db2d9bac356a11f5b64279a5e6708b97" } } }, "nbformat": 4, "nbformat_minor": 2 }