fixed code repository for solution one in Sharepoint solution (#1264)

This commit is contained in:
Max Reid 2024-06-28 15:38:54 -04:00 committed by GitHub
parent 774c524bd8
commit fb202f0369
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 19 additions and 102 deletions

View File

@ -145,7 +145,7 @@ See the documentation [here](https://learn.microsoft.com/en-us/azure/azure-funct
5. Leave all the other settings on this page as the default, but feel free to change based on your internal guidelines.
6. On the **permissions** tab, click **Add Permission** and add **Files.Read.All**, then **Add.** This allows this application to read files which is important in order to use the Microsoft Graph Search API.
6. On the **permissions** tab, click **Add Permission** and add **Files.Read.All** and **Sites.ReadAll**, then **Add.** This allows this application to read files which is important in order to use the Microsoft Graph Search API.
4. Once it is created, **click on the enterprise application you just created** (so, leave the Function App page and land on the Enterprise Application that you just spun up)**.** We are now going to give it one more permission, to execute the Azure Function by impersonating the user logging into the application. See [here](https://learn.microsoft.com/en-us/azure/app-service/configure-authentication-provider-aad?tabs=workforce-tenant) for more details.

View File

@ -1,10 +1,9 @@
const { Client } = require('@microsoft/microsoft-graph-client');
const pdfParse = require('pdf-parse');
const { Buffer } = require('buffer');
const path = require('path');
const axios = require('axios');
const qs = require('querystring');
const { OpenAI } = require("openai");
//// --------- ENVIRONMENT CONFIGURATION AND INITIALIZATION ---------
// Function to initialize Microsoft Graph client
@ -46,79 +45,36 @@ const getOboToken = async (userAccessToken) => {
};
//// --------- DOCUMENT PROCESSING ---------
// Function to fetch drive item content and convert to text
const getDriveItemContent = async (client, driveId, itemId, name) => {
try {
const fileType = path.extname(name).toLowerCase();
// const fileType = path.extname(name).toLowerCase();
// the below files types are the ones that are able to be converted to PDF to extract the text. See https://learn.microsoft.com/en-us/graph/api/driveitem-get-content-format?view=graph-rest-1.0&tabs=http
const allowedFileTypes = ['.pdf', '.doc', '.docx', '.odp', '.ods', '.odt', '.pot', '.potm', '.potx', '.pps', '.ppsx', '.ppsxm', '.ppt', '.pptm', '.pptx', '.rtf'];
// const allowedFileTypes = ['.pdf', '.doc', '.docx', '.odp', '.ods', '.odt', '.pot', '.potm', '.potx', '.pps', '.ppsx', '.ppsxm', '.ppt', '.pptm', '.pptx', '.rtf'];
// filePath changes based on file type, adding ?format=pdf to convert non-pdf types to pdf for text extraction, so all files in allowedFileTypes above are converted to pdf
const filePath = `/drives/${driveId}/items/${itemId}/content` + ((fileType === '.pdf' || fileType === '.txt' || fileType === '.csv') ? '' : '?format=pdf');
if (allowedFileTypes.includes(fileType)) {
response = await client.api(filePath).getStream();
// The below takes the chunks in response and combines
let chunks = [];
for await (let chunk of response) {
const filePath = `/drives/${driveId}/items/${itemId}`;
const downloadPath = filePath + `/content`
const fileStream = await client.api(downloadPath).getStream();
let chunks = [];
for await (let chunk of fileStream) {
chunks.push(chunk);
}
let buffer = Buffer.concat(chunks);
// the below extracts the text from the PDF.
const pdfContents = await pdfParse(buffer);
return pdfContents.text;
} else if (fileType === '.txt') {
// If the type is txt, it does not need to create a stream and instead just grabs the content
response = await client.api(filePath).get();
return response;
} else if (fileType === '.csv') {
response = await client.api(filePath).getStream();
let chunks = [];
for await (let chunk of response) {
chunks.push(chunk);
}
let buffer = Buffer.concat(chunks);
let dataString = buffer.toString('utf-8');
return dataString
} else {
return 'Unsupported File Type';
}
const base64String = Buffer.concat(chunks).toString('base64');
const file = await client.api(filePath).get();
const mime_type = file.file.mimeType;
const name = file.name;
return {"name":name, "mime_type":mime_type, "content":base64String}
} catch (error) {
console.error('Error fetching drive content:', error);
throw new Error(`Failed to fetch content for ${name}: ${error.message}`);
}
};
// Function to get relevant parts of text using gpt-3.5-turbo.
const getRelevantParts = async (text, query) => {
try {
// We use your OpenAI key to initialize the OpenAI client
const openAIKey = process.env["OPENAI_API_KEY"];
const openai = new OpenAI({
apiKey: openAIKey,
});
const response = await openai.chat.completions.create({
// Using gpt-3.5-turbo due to speed to prevent timeouts. You can tweak this prompt as needed
model: "gpt-3.5-turbo-0125",
messages: [
{"role": "system", "content": "You are a helpful assistant that finds relevant content in text based on a query. You only return the relevant sentences, and you return a maximum of 10 sentences"},
{"role": "user", "content": `Based on this question: **"${query}"**, get the relevant parts from the following text:*****\n\n${text}*****. If you cannot answer the question based on the text, respond with 'No information provided'`}
],
// using temperature of 0 since we want to just extract the relevant content
temperature: 0,
// using max_tokens of 1000, but you can customize this based on the number of documents you are searching.
max_tokens: 1000
});
return response.choices[0].message.content;
} catch (error) {
console.error('Error with OpenAI:', error);
return 'Error processing text with OpenAI' + error;
}
};
//// --------- AZURE FUNCTION LOGIC ---------
// Below is what the Azure Function executes
module.exports = async function (context, req) {
const query = req.query.query || (req.body && req.body.query);
// const query = req.query.query || (req.body && req.body.query);
const searchTerm = req.query.searchTerm || (req.body && req.body.searchTerm);
if (!req.headers.authorization) {
context.res = {
@ -157,25 +113,6 @@ module.exports = async function (context, req) {
};
try {
// Function to tokenize content (e.g., based on words).
const tokenizeContent = (content) => {
return content.split(/\s+/);
};
// Function to break tokens into 10k token windows for gpt-3.5-turbo
const breakIntoTokenWindows = (tokens) => {
const tokenWindows = []
const maxWindowTokens = 10000; // 10k tokens
let startIndex = 0;
while (startIndex < tokens.length) {
const window = tokens.slice(startIndex, startIndex + maxWindowTokens);
tokenWindows.push(window);
startIndex += maxWindowTokens;
}
return tokenWindows;
};
// This is where we are doing the search
const list = await client.api('/search/query').post(requestBody);
@ -187,30 +124,9 @@ module.exports = async function (context, req) {
for (const hit of container.hits) {
if (hit.resource["@odata.type"] === "#microsoft.graph.driveItem") {
const { name, id } = hit.resource;
// We use the below to grab the URL of the file to include in the response
const webUrl = hit.resource.webUrl.replace(/\s/g, "%20");
// The Microsoft Graph API ranks the reponses, so we use this to order it
const rank = hit.rank;
// The below is where the file lives
const driveId = hit.resource.parentReference.driveId;
const contents = await getDriveItemContent(client, driveId, id, name);
if (contents !== 'Unsupported File Type') {
// Tokenize content using function defined previously
const tokens = tokenizeContent(contents);
// Break tokens into 10k token windows
const tokenWindows = breakIntoTokenWindows(tokens);
// Process each token window and combine results
const relevantPartsPromises = tokenWindows.map(window => getRelevantParts(window.join(' '), query));
const relevantParts = await Promise.all(relevantPartsPromises);
const combinedResults = relevantParts.join('\n'); // Combine results
results.push({ name, webUrl, rank, contents: combinedResults });
}
else {
results.push({ name, webUrl, rank, contents: 'Unsupported File Type' });
}
results.push(contents)
}
}
}));
@ -224,7 +140,8 @@ module.exports = async function (context, req) {
} else {
// If the Microsoft Graph API does return results, then run processList to iterate through.
results = await processList();
results.sort((a, b) => a.rank - b.rank);
results = {'openaiFileResponse': results}
// results.sort((a, b) => a.rank - b.rank);
}
context.res = {
status: 200,