Update transformers.py

Add explanative docstring to handle_file_string function and move docstrings to below function definition as per pep 257 specification
This commit is contained in:
Josh Shepherd 2023-05-18 13:30:55 +01:00 committed by GitHub
parent 8d37a0912d
commit ed23dba54b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -37,8 +37,8 @@ def get_embeddings(text_array, engine):
# Split a text into smaller chunks of size n, preferably ending at the end of a sentence
def chunks(text, n, tokenizer):
tokens = tokenizer.encode(text)
"""Yield successive n-sized chunks from text."""
tokens = tokenizer.encode(text)
i = 0
while i < len(tokens):
# Find the nearest end of sentence within a range of 0.5 * n and 1.5 * n tokens
@ -58,22 +58,37 @@ def chunks(text, n, tokenizer):
def get_unique_id_for_file_chunk(filename, chunk_index):
return str(filename+"-!"+str(chunk_index))
def handle_file_string(file,tokenizer,redis_conn, text_embedding_field,index_name):
def handle_file_string(file, tokenizer, redis_conn, text_embedding_field, index_name):
"""
Handle a file string by cleaning it up, creating embeddings, and uploading them to Redis.
Args:
file (tuple): A tuple containing the filename and file body string.
tokenizer: The tokenizer object to use for encoding and decoding text.
redis_conn: The Redis connection object.
text_embedding_field (str): The field in Redis where the text embeddings will be stored.
index_name: The name of the index or identifier for the embeddings.
Returns:
None
Raises:
Exception: If there is an error creating embeddings or uploading to Redis.
"""
filename = file[0]
file_body_string = file[1]
# Clean up the file string by replacing newlines and double spaces and semi-colons
clean_file_body_string = file_body_string.replace(" ", " ").replace("\n", "; ").replace(';',' ')
#
# Clean up the file string by replacing newlines, double spaces, and semi-colons
clean_file_body_string = file_body_string.replace(" ", " ").replace("\n", "; ").replace(';', ' ')
# Add the filename to the text to embed
text_to_embed = "Filename is: {}; {}".format(
filename, clean_file_body_string)
text_to_embed = "Filename is: {}; {}".format(filename, clean_file_body_string)
# Create embeddings for the text
try:
text_embeddings, average_embedding = create_embeddings_for_text(
text_to_embed, tokenizer)
#print("[handle_file_string] Created embedding for {}".format(filename))
# Create embeddings for the text
text_embeddings, average_embedding = create_embeddings_for_text(text_to_embed, tokenizer)
# print("[handle_file_string] Created embedding for {}".format(filename))
except Exception as e:
print("[handle_file_string] Error creating embedding: {}".format(e))
@ -82,17 +97,17 @@ def handle_file_string(file,tokenizer,redis_conn, text_embedding_field,index_nam
vectors = []
for i, (text_chunk, embedding) in enumerate(text_embeddings):
id = get_unique_id_for_file_chunk(filename, i)
vectors.append(({'id': id
, "vector": embedding, 'metadata': {"filename": filename
, "text_chunk": text_chunk
, "file_chunk_index": i}}))
vectors.append({'id': id, "vector": embedding, 'metadata': {"filename": filename,
"text_chunk": text_chunk,
"file_chunk_index": i}})
try:
load_vectors(redis_conn, vectors,text_embedding_field)
# Load vectors into Redis
load_vectors(redis_conn, vectors, text_embedding_field)
except Exception as e:
print(f'Ran into a problem uploading to Redis: {e}')
# Make a class to generate batches for insertion
class BatchGenerator:
@ -113,4 +128,4 @@ class BatchGenerator:
def splits_num(self, elements: int) -> int:
return round(elements / self.batch_size)
__call__ = to_batches
__call__ = to_batches