mirror of
https://github.com/openai/openai-cookbook
synced 2024-11-04 06:00:33 +00:00
Add W&B embedding projector example
This commit is contained in:
parent
420c818ba1
commit
e2106af5db
108
examples/Visualizing_embeddings_in_W&B.ipynb
Normal file
108
examples/Visualizing_embeddings_in_W&B.ipynb
Normal file
@ -0,0 +1,108 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Visualizing the embeddings in W&B\n",
|
||||
"\n",
|
||||
"We will upload the data to [Weights & Biases](http://wandb.ai) and use an [Embedding Projector](https://docs.wandb.ai/ref/app/features/panels/weave/embedding-projector) to visualize the embeddings using common dimension reduction algorithms like PCA, UMAP, and t-SNE. The dataset is created in the [Obtain_dataset Notebook](Obtain_dataset.ipynb)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 1. Log the data to W&B\n",
|
||||
"\n",
|
||||
"We create a [W&B Table](https://docs.wandb.ai/guides/data-vis/log-tables) with the original data and the embeddings. Each review is a new row and the 1536 embedding floats are given their own column named `emb_{i}`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sklearn.manifold import TSNE\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"# Load the embeddings\n",
|
||||
"datafile_path = \"data/fine_food_reviews_with_embeddings_1k.csv\"\n",
|
||||
"df = pd.read_csv(datafile_path)\n",
|
||||
"\n",
|
||||
"# Convert to a list of lists of floats\n",
|
||||
"matrix = np.array(df.embedding.apply(eval).to_list())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import wandb\n",
|
||||
"\n",
|
||||
"original_cols = df.columns[1:-1].tolist()\n",
|
||||
"embedding_cols = ['emb_'+str(idx) for idx in range(len(matrix[0]))]\n",
|
||||
"table_cols = original_cols + embedding_cols\n",
|
||||
"\n",
|
||||
"with wandb.init(project='openai_embeddings'):\n",
|
||||
" table = wandb.Table(columns=table_cols)\n",
|
||||
" for i, row in enumerate(df.to_dict(orient=\"records\")):\n",
|
||||
" original_data = [row[col_name] for col_name in original_cols]\n",
|
||||
" embedding_data = matrix[i].tolist()\n",
|
||||
" table.add_data(*(original_data + embedding_data))\n",
|
||||
" wandb.log({'openai_embedding_table': table})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2. Render as 2D Projection"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"After navigating to the W&B run link, we click the ⚙️ icon in the top right of the Table and change \"Render As:\" to \"Combined 2D Projection\". "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Example: http://wandb.me/openai_embeddings"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.15"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "365536dcbde60510dc9073d6b991cd35db2d9bac356a11f5b64279a5e6708b97"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
Loading…
Reference in New Issue
Block a user