Merge pull request #315 from openai/isa/file-q-and-a-updates

Use ChatGPT API in File Q and A demo + minor fixes
This commit is contained in:
isafulf 2023-04-02 17:34:15 -07:00 committed by GitHub
commit a89c8a8742
11 changed files with 129 additions and 71 deletions

View File

@ -1,6 +1,11 @@
// A function that takes a file name and a string and returns true if the file name is contained in the string
// after removing punctuation and whitespace from both
export const isFileNameInString = (fileName: string, str: string) => {
// Check if the input string is null or undefined
if (!str) {
return false;
}
// Convert both to lowercase and remove punctuation and whitespace
const normalizedFileName = fileName
.toLowerCase()

View File

@ -42,7 +42,11 @@ def get_answer_from_files(question, session_id, pinecone_index):
break
files_string += file_string
prompt = f"Given a question, try to answer it using the content of the file extracts below, and if you cannot answer, or find " \
# Note: this is not the proper way to use the ChatGPT conversational format, but it works for now
messages = [
{
"role": "system",
"content": f"Given a question, try to answer it using the content of the file extracts below, and if you cannot answer, or find " \
f"a relevant file, just output \"I couldn't find the answer to that question in your files.\".\n\n" \
f"If the answer is not contained in the files or if there are no file extracts, respond with \"I couldn't find the answer " \
f"to that question in your files.\" If the question is not actually a question, respond with \"That's not a valid question.\"\n\n" \
@ -54,20 +58,19 @@ def get_answer_from_files(question, session_id, pinecone_index):
f"Question: {question}\n\n" \
f"Files:\n{files_string}\n" \
f"Answer:"
},
]
logging.info(f"[get_answer_from_files] prompt: {prompt}")
response = openai.Completion.create(
prompt=prompt,
temperature=0,
response = openai.ChatCompletion.create(
messages=messages,
model=GENERATIVE_MODEL,
max_tokens=1000,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
engine=GENERATIVE_MODEL,
temperature=0,
)
answer = response.choices[0].text.strip()
choices = response["choices"] # type: ignore
answer = choices[0].message.content.strip()
logging.info(f"[get_answer_from_files] answer: {answer}")
return jsonify({"answer": answer})

View File

@ -8,7 +8,7 @@ SERVER_PORT: "8080"
# ---- OPENAI CONFIG -----
EMBEDDINGS_MODEL: "text-embedding-ada-002"
GENERATIVE_MODEL: "text-davinci-003"
GENERATIVE_MODEL: "gpt-3.5-turbo" # use gpt-4 for better results
EMBEDDING_DIMENSIONS: 1536
TEXT_EMBEDDING_CHUNK_SIZE: 200
# This is the minimum cosine similarity score that a file must have with the search query to be considered relevant

View File

@ -1,11 +1,11 @@
Flask-Cors==3.0.10
openai==0.13.0
pinecone-client==2.0.13
PyPDF2==2.10.4
numpy==1.23.2
scikit-learn==1.1.2
docx2txt==0.8
Flask-Cors>=3.0.10
openai>=0.27.2
pinecone-client>=2.0.13
PyPDF2>=2.10.4
numpy>=1.23.2
scikit-learn>=1.1.2
docx2txt>=0.8
flask>=1.1.4
jinja2==3.0.1
PyYAML==6.0
tiktoken==0.1.2
jinja2>=3.0.1
PyYAML>=6.0
tiktoken>=0.1.2

View File

@ -28,7 +28,7 @@
"mammoth": "^1.5.1",
"next": "13.1.2",
"node-html-markdown": "^1.3.0",
"openai": "^3.1.0",
"openai": "^3.2.1",
"pdf-parse": "^1.1.1",
"react": "18.2.0",
"react-dom": "18.2.0",
@ -3978,9 +3978,9 @@
}
},
"node_modules/openai": {
"version": "3.1.0",
"resolved": "https://registry.npmjs.org/openai/-/openai-3.1.0.tgz",
"integrity": "sha512-v5kKFH5o+8ld+t0arudj833Mgm3GcgBnbyN9946bj6u7bvel4Yg6YFz2A4HLIYDzmMjIo0s6vSG9x73kOwvdCg==",
"version": "3.2.1",
"resolved": "https://registry.npmjs.org/openai/-/openai-3.2.1.tgz",
"integrity": "sha512-762C9BNlJPbjjlWZi4WYK9iM2tAVAv0uUp1UmI34vb0CN5T2mjB/qM6RYBmNKMh/dN9fC+bxqPwWJZUTWW052A==",
"dependencies": {
"axios": "^0.26.0",
"form-data": "^4.0.0"
@ -8003,9 +8003,9 @@
}
},
"openai": {
"version": "3.1.0",
"resolved": "https://registry.npmjs.org/openai/-/openai-3.1.0.tgz",
"integrity": "sha512-v5kKFH5o+8ld+t0arudj833Mgm3GcgBnbyN9946bj6u7bvel4Yg6YFz2A4HLIYDzmMjIo0s6vSG9x73kOwvdCg==",
"version": "3.2.1",
"resolved": "https://registry.npmjs.org/openai/-/openai-3.2.1.tgz",
"integrity": "sha512-762C9BNlJPbjjlWZi4WYK9iM2tAVAv0uUp1UmI34vb0CN5T2mjB/qM6RYBmNKMh/dN9fC+bxqPwWJZUTWW052A==",
"requires": {
"axios": "^0.26.0",
"form-data": "^4.0.0"

View File

@ -29,7 +29,7 @@
"mammoth": "^1.5.1",
"next": "13.1.2",
"node-html-markdown": "^1.3.0",
"openai": "^3.1.0",
"openai": "^3.2.1",
"pdf-parse": "^1.1.1",
"react": "18.2.0",
"react-dom": "18.2.0",

View File

@ -74,6 +74,13 @@ function FileQandAArea(props: FileQandAAreaProps) {
fileChunks: results,
}),
});
if (res.status === 500) {
setAnswerError("Internal server error. Please try again later.");
setAnswerLoading(false);
return;
}
const reader = res.body!.getReader();
while (true) {

View File

@ -40,8 +40,6 @@ export default async function handler(
.join("\n")
.slice(0, MAX_FILES_LENGTH);
console.log(filesString);
const prompt =
`Given a question, try to answer it using the content of the file extracts below, and if you cannot answer, or find a relevant file, just output \"I couldn't find the answer to that question in your files.\".\n\n` +
`If the answer is not contained in the files or if there are no file extracts, respond with \"I couldn't find the answer to that question in your files.\" If the question is not actually a question, respond with \"That's not a valid question.\"\n\n` +
@ -53,7 +51,6 @@ export default async function handler(
const stream = completionStream({
prompt,
model: "text-davinci-003",
});
// Set the response headers for streaming

View File

@ -27,6 +27,8 @@ export default async function handler(
// Create a formidable instance to parse the request as a multipart form
const form = new formidable.IncomingForm();
form.maxFileSize = 30 * 1024 * 1024; // Set the max file size to 30MB
try {
const { fields, files } = await new Promise<{
fields: Fields;

View File

@ -1,8 +1,9 @@
import { IncomingMessage } from "http";
import {
ChatCompletionRequestMessageRoleEnum,
Configuration,
CreateChatCompletionResponse,
CreateCompletionRequest,
CreateCompletionResponse,
OpenAIApi,
} from "openai";
@ -30,24 +31,30 @@ type EmbeddingOptions = {
export async function completion({
prompt,
fallback,
max_tokens = 800,
max_tokens,
temperature = 0,
model = "text-davinci-003",
...otherOptions
model = "gpt-3.5-turbo", // use gpt-4 for better results
}: CompletionOptions) {
try {
const result = await openai.createCompletion({
prompt,
max_tokens,
temperature,
// Note: this is not the proper way to use the ChatGPT conversational format, but it works for now
const messages = [
{
role: ChatCompletionRequestMessageRoleEnum.System,
content: prompt ?? "",
},
];
const result = await openai.createChatCompletion({
model,
...otherOptions,
messages,
temperature,
max_tokens: max_tokens ?? 800,
});
if (!result.data.choices[0].text) {
throw new Error("No text returned from the completions endpoint.");
if (!result.data.choices[0].message) {
throw new Error("No text returned from completions endpoint");
}
return result.data.choices[0].text;
return result.data.choices[0].message.content;
} catch (error) {
if (fallback) return fallback;
else throw error;
@ -59,33 +66,65 @@ export async function* completionStream({
fallback,
max_tokens = 800,
temperature = 0,
model = "text-davinci-003",
model = "gpt-3.5-turbo", // use gpt-4 for better results
}: CompletionOptions) {
try {
const result = await openai.createCompletion(
// Note: this is not the proper way to use the ChatGPT conversational format, but it works for now
const messages = [
{
role: ChatCompletionRequestMessageRoleEnum.System,
content: prompt ?? "",
},
];
const result = await openai.createChatCompletion(
{
prompt,
max_tokens,
temperature,
model,
messages,
temperature,
max_tokens: max_tokens ?? 800,
stream: true,
},
{ responseType: "stream" }
{
responseType: "stream",
}
);
const stream = result.data as any as IncomingMessage;
for await (const chunk of stream) {
const line = chunk.toString().trim();
const message = line.split("data: ")[1];
let buffer = "";
const textDecoder = new TextDecoder();
for await (const chunk of stream) {
buffer += textDecoder.decode(chunk, { stream: true });
const lines = buffer.split("\n");
// Check if the last line is complete
if (buffer.endsWith("\n")) {
buffer = "";
} else {
buffer = lines.pop() || "";
}
for (const line of lines) {
const message = line.trim().split("data: ")[1];
if (message === "[DONE]") {
break;
}
const data = JSON.parse(message) as CreateCompletionResponse;
yield data.choices[0].text;
// Check if the message is not undefined and a valid JSON string
if (message) {
try {
const data = JSON.parse(message) as CreateChatCompletionResponse;
// @ts-ignore
if (data.choices[0].delta?.content) {
// @ts-ignore
yield data.choices[0].delta?.content;
}
} catch (error) {
console.error("Error parsing JSON message:", error);
}
}
}
}
} catch (error) {
if (fallback) yield fallback;

View File

@ -1,6 +1,11 @@
// A function that takes a file name and a string and returns true if the file name is contained in the string
// after removing punctuation and whitespace from both
export const isFileNameInString = (fileName: string, str: string) => {
// Check if the input string is null or undefined
if (!str) {
return false;
}
// Convert both to lowercase and remove punctuation and whitespace
const normalizedFileName = fileName
.toLowerCase()