Remove legacy transition guides from 2021/2022 (#718)

This commit is contained in:
Will DePue 2023-09-15 18:47:08 -05:00 committed by GitHub
parent fd4e31bb00
commit 78c6ed57ca
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 0 additions and 730 deletions

View File

@ -1,50 +0,0 @@
# Deprecation of Answers, Classification, and Search
In 2021, OpenAI released specialized endpoints in beta for Answers, Classification, and Search.
While these specialized endpoints were convenient, they had two drawbacks:
1. These specialized endpoints were eclipsed by techniques that achieved better results.
2. These specialized endpoints were more difficult to customize and optimize for individual use cases.
As a result, **the Answers, Classifications, and Search endpoints are being deprecated.**
## Timeline of deprecation
For those who have not used these endpoints, nothing will change except that access will no longer be available.
**For existing users of these endpoints, access will continue until December 3, 2022.** Before that date, we strongly encourage developers to switch over to newer techniques which produce better results.
## How to transition
We've written guides and code examples for transitioning from the deprecated API endpoints to better methods.
### Answers
[Guide: How to transition off the Answers endpoint](https://help.openai.com/en/articles/6233728-answers-transition-guide)
* Option 1: transition to embeddings-based search **(recommended)**
* Example code: [Semantic_text_search_using_embeddings.ipynb](../examples/Semantic_text_search_using_embeddings.ipynb)
* Option 2: reimplement Answers endpoint functionality
* Example code: [answers_functionality_example.py](answers_functionality_example.py)
### Classification
[Guide: How to transition off the Classifications endpoint](https://help.openai.com/en/articles/6272941-classifications-transition-guide)
* Option 1: transition to fine-tuning **(recommended)**
* Example code: [Fine-tuned_classification.ipynb](../examples/Fine-tuned_classification.ipynb)
* Option 2: transition to embeddings
* Example code: [Semantic_text_search_using_embeddings.ipynb](../examples/Semantic_text_search_using_embeddings.ipynb)
* Option 3: reimplement Classifications endpoint functionality
* Example code: [classification_functionality_example.py](classification_functionality_example.py)
### Search
[Guide: How to transition off the Search endpoint](https://help.openai.com/en/articles/6272952-search-transition-guide)
* Option 1: transition to embeddings-based search **(recommended)**
* Example code: [Semantic_text_search_using_embeddings.ipynb](../examples/Semantic_text_search_using_embeddings.ipynb)
* Option 2: reimplement Search endpoint functionality
* Example code: [search_functionality_example.py](search_functionality_example.py)

View File

@ -1,304 +0,0 @@
from transformers import GPT2TokenizerFast
import openai
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
MAX_TOKENS_LIMIT = 2048
ANSWERS_INSTRUCTION = "Please answer the question according to the above context.\n"
CONTEXT_TEMPLATE = "===\nContext: {context}\n===\n"
def extract_instruction(instruction):
"""
Extract `instruction` parameter and format it properly.
If not exist, return empty string.
"""
if instruction is None:
return ""
return f"{instruction.strip()}\n\n"
def semantic_search(
search_model, query_for_search, file_id=None, max_documents=None, examples=None
):
"""
:param examples: A list of {"text":...} or {"text": ..., "label": ...}.
:return:
a list of semantic search result dict of documents sorted by "score":
[
{
"document": ...,
"object": "search_result",
"score": ...,
"text": ...,
},
...
]
"""
assert (examples is None) ^ (file_id is None) # xor
if file_id is not None:
# This is where you'd do an elastic search call. Since there isn't an example of this
# we can query, we'll raise an error.
# The return value from this would be a list of examples
raise NotImplementedError()
# This isn't quite accurate since Search is also being deprecated. See our search guide for more
# information.
search_result = openai.Search.create(
model=search_model,
documents=[x["text"] for x in examples],
query=query_for_search,
)
info_dict = {d["document"]: d for d in search_result["data"]}
sorted_doc_ids = sorted(
info_dict.keys(), key=lambda x: info_dict[x]["score"], reverse=True
)
if max_documents:
sorted_doc_ids = sorted_doc_ids[:max_documents]
return [info_dict[i] for i in sorted_doc_ids]
def select_by_length(
sorted_doc_infos,
max_token_len,
lambda_fn=None,
):
"""
Give a list of (document ID, document content in string), we will select as many
documents as possible as long as the total length does not go above `max_token_len`.
:param sorted_doc_infos: A list of semantic search result dict of documents sorted by "score".
:param max_token_len: The maximum token length for selected documents.
:param lambda_fn: A function that takes in search results dict and output a formatted
example for context stuffing.
:return: A tuple of (
A concatenation of selected documents used as context,
A list of selected document IDs
)
"""
if not sorted_doc_infos:
return "", []
selected_indices = []
total_doc_tokens = 0
doc_dict = {}
for i, doc_info in enumerate(sorted_doc_infos):
doc = lambda_fn(doc_info) if lambda_fn else doc_info["text"]
n_doc_tokens = len(tokenizer.encode(doc))
if total_doc_tokens + n_doc_tokens < max_token_len:
total_doc_tokens += n_doc_tokens
selected_indices.append(i)
doc_dict[i] = doc
# The top ranked documents should go at the end.
selected_indices = selected_indices[::-1]
context = "".join([doc_dict[i] for i in selected_indices])
selected_doc_infos = [sorted_doc_infos[i] for i in selected_indices]
return context, selected_doc_infos
def answers(
examples,
question,
model,
examples_context,
file_id=None,
documents=None,
logit_bias=None,
max_rerank=200,
max_tokens=16,
alternative_question=None,
search_model="ada",
temperature=0.0,
logprobs=0,
stop=None,
n=1,
):
"""
Given a prompt, a question, a list of (question, answer) pairs as examples, and
a list of documents for context, it tries to include all the QA examples and top
relevant context documents.
The constructed prompt for the final completion call:
```
Please answer the question according to the above context.
===
Context: {{ the context for example QA pairs. }}
===
Q: example 1 question
A: example 1 answer
---
Q: example 2 question
A: example 2 answer
===
Context: {{ a list of relevant documents sorted via search(question, documents) }}
===
Q: question
A:
```
The returned object has a structure like:
{
"answers": [
"Beijing",
"Beijing, China"
],
"completion_id": "xxx-xxx",
"object": "answer",
"selected_documents": [
{
"document": ..., # document index, same as in search/ results.
"object": "search_result",
"text": ...,
},
...
],
}
"""
examples = examples if examples else []
example_prompts = [f"Q: {x}\nA: {y}" for x, y in examples]
prompt = f"Q: {question}\nA:"
# Append all the QA examples into the prompt.
if examples_context:
examples_context = CONTEXT_TEMPLATE.format(context=examples_context)
instruction = (
ANSWERS_INSTRUCTION + examples_context + "\n---\n".join(example_prompts) + "\n"
)
logit_bias = logit_bias if logit_bias is not None else {}
if file_id is None and documents is None:
raise Exception("Please submit at least one of `documents` or `file`.")
if file_id is not None and documents is not None:
raise Exception("Please submit only one of `documents` or `file`.")
instruction = extract_instruction(instruction)
n_instruction_tokens = len(tokenizer.encode(instruction))
n_prompt_tokens = len(tokenizer.encode(prompt))
n_query_tokens = len(tokenizer.encode(question))
n_context_tokens = len(tokenizer.encode(CONTEXT_TEMPLATE.format(context="")))
if documents is not None:
documents = [doc.strip() + " " for doc in documents]
n_docs_tokens = [len(tokenizer.encode(doc)) for doc in documents]
# Except all the required content, how many tokens left for context stuffing.
leftover_token_len = MAX_TOKENS_LIMIT - (
n_instruction_tokens + n_context_tokens + n_prompt_tokens + max_tokens
)
sorted_doc_infos = []
question_for_search = (
alternative_question if alternative_question is not None else question
)
if file_id is not None:
search_model_, sorted_doc_infos = semantic_search(
search_model,
question_for_search,
file_id=file_id,
max_documents=max_rerank,
)
elif len(documents) == 0:
# If no context document is provided, do nothing.
pass
elif min(n_docs_tokens) >= leftover_token_len:
# If there is no room for adding any context doc.
pass
elif (max_rerank is None or max_rerank >= len(documents)) and sum(
n_docs_tokens
) < leftover_token_len:
# If the total length of docs is short enough to be added all.
selected_indices = list(range(len(documents)))
sorted_doc_infos = [
{"document": i, "text": documents[i]} for i in selected_indices
]
elif n_query_tokens + max(n_docs_tokens) >= MAX_TOKENS_LIMIT:
# If the prompt and the longest document together go above the limit.
total_tokens = n_query_tokens + max(n_docs_tokens)
raise Exception(
f"The longest document and prompt pair together contains {total_tokens} "
f"tokens, above the limit {MAX_TOKENS_LIMIT} for semantic search. Please consider "
f"shortening the prompt or the longest document."
)
else:
# If we can add some context documents but not all of them, we should
# query search endpoint to rank docs by score.
sorted_doc_infos = semantic_search(
search_model,
question_for_search,
examples=[{"text": doc} for doc in documents],
max_documents=max_rerank,
)
# Select documents w.r.t. the context length limitation.
context, sorted_doc_infos = select_by_length(
sorted_doc_infos,
leftover_token_len,
lambda_fn=lambda x: x["text"].strip() + " ",
)
# Add instruction before the context and the prompt after the context.
if context:
context = CONTEXT_TEMPLATE.format(context=context.strip())
full_prompt = instruction + context + prompt
completion_result = openai.Completion.create(
engine=model,
prompt=full_prompt,
logit_bias=logit_bias,
temperature=temperature,
n=n,
max_tokens=max_tokens,
stop=stop,
logprobs=logprobs,
)
completion_result["selected_documents"] = sorted_doc_infos
result = dict(
object="answer",
selected_documents=completion_result.pop("selected_documents"),
completion=completion_result["id"],
)
result["answers"] = [
item["text"].replace("A:", "").split("Q:")[0].strip()
for item in completion_result["choices"]
]
return result
print(
answers(
examples=[
["What is the capital of Washington", "Olympia"],
["What is the capital of Oregon", "Salem"],
],
question="What is the capital of China?",
examples_context="I am a bot that names country capitals",
documents=["I am a bot that names country capitals"],
model="davinci",
search_model="ada",
alternative_question="different test",
max_tokens=16,
stop=["\n\n"],
)
)

View File

@ -1,302 +0,0 @@
import itertools
from collections import defaultdict
from transformers import GPT2TokenizerFast
import openai
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
MAX_TOKENS_LIMIT = 2048
def create_instruction(labels) -> str:
"""
Construct an instruction for a classification task.
"""
instruction = f"Please classify a piece of text into the following categories: {', '.join(labels)}."
return f"{instruction.strip()}\n\n"
def semantic_search(
search_model, query_for_search, file_id=None, max_documents=None, examples=None
):
"""
:param examples: A list of {"text":...} or {"text": ..., "label": ...}.
:return:
a list of semantic search result dict of documents sorted by "score":
[
{
"document": ...,
"object": "search_result",
"score": ...,
"text": ...,
},
...
]
"""
assert (examples is None) ^ (file_id is None) # xor
if file_id is not None:
# This is where you'd do an elastic search call. Since there isn't an example of this
# we can query, we'll raise an error.
# The return value from this would be a list of examples
raise NotImplementedError()
# This isn't quite accurate since Search is also being deprecated. See our search guide for more
# information.
search_result = openai.Search.create(
model=search_model,
documents=[x["text"] for x in examples],
query=query_for_search,
)
info_dict = {d["document"]: d for d in search_result["data"]}
sorted_doc_ids = sorted(
info_dict.keys(), key=lambda x: info_dict[x]["score"], reverse=True
)
if max_documents:
sorted_doc_ids = sorted_doc_ids[:max_documents]
return [info_dict[i] for i in sorted_doc_ids]
def select_by_length(
sorted_doc_infos,
max_token_len,
lambda_fn=None,
):
"""
Give a list of (document ID, document content in string), we will select as many
documents as possible as long as the total length does not go above `max_token_len`.
:param sorted_doc_infos: A list of semantic search result dict of documents sorted by "score".
:param max_token_len: The maximum token length for selected documents.
:param lambda_fn: A function that takes in search results dict and output a formatted
example for context stuffing.
:return: A tuple of (
A concatenation of selected documents used as context,
A list of selected document IDs
)
"""
if not sorted_doc_infos:
return "", []
selected_indices = []
total_doc_tokens = 0
doc_dict = {}
for i, doc_info in enumerate(sorted_doc_infos):
doc = lambda_fn(doc_info) if lambda_fn else doc_info["text"]
n_doc_tokens = len(tokenizer.encode(doc))
if total_doc_tokens + n_doc_tokens < max_token_len:
total_doc_tokens += n_doc_tokens
selected_indices.append(i)
doc_dict[i] = doc
# The top ranked documents should go at the end.
selected_indices = selected_indices[::-1]
context = "".join([doc_dict[i] for i in selected_indices])
selected_doc_infos = [sorted_doc_infos[i] for i in selected_indices]
return context, selected_doc_infos
def format_example_fn(x: dict) -> str:
return "Text: {text}\nCategory: {label}\n---\n".format(
text=x["text"].replace("\n", " ").strip(),
label=x["label"].replace("\n", " ").strip(),
)
def classifications(
query,
model,
search_model="ada",
examples=None,
file=None,
labels=None,
temperature=0.0,
logprobs=None,
max_examples=200,
logit_bias=None,
alternative_query=None,
max_tokens=16,
) -> dict:
"""
Given a prompt, a question and a list of examples, containing (text, label) pairs,
it selects top relevant examples to construct a prompt for few-shot classification.
The constructed prompt for the final completion call:
```
{{ an optional instruction }}
Text: example 1 text
Category: example 1 label
---
Text: example 1 text
Category: example 2 label
---
Text: question
Category:
```
The returned object has a structure like:
{
"label": "Happy",
"model": "ada",
"object": "classification",
"selected_examples": [
{
"document": ..., # document index, same as in search/ results.
"text": ...,
"label": ...,
},
...
],
}
"""
query = query.replace("\n", " ").strip()
logit_bias = logit_bias if logit_bias else {}
labels = labels if labels else []
if file is None and examples is None:
raise Exception("Please submit at least one of `examples` or `file`.")
if file is not None and examples is not None:
raise Exception("Please submit only one of `examples` or `file`.")
instruction = create_instruction(labels)
query_for_search = alternative_query if alternative_query is not None else query
# Extract examples and example labels first.
if file is not None:
sorted_doc_infos = semantic_search(
search_model,
query_for_search,
file_id=file,
max_documents=max_examples,
)
else:
example_prompts = [
format_example_fn(dict(text=x, label=y)) for x, y in examples
]
n_examples_tokens = [len(tokenizer.encode(x)) for x in example_prompts]
query_prompt = f"Text: {query}\nCategory:"
n_instruction_tokens = len(tokenizer.encode(instruction))
n_query_tokens = len(tokenizer.encode(query_prompt))
# Except all the required content, how many tokens left for context stuffing.
leftover_token_len = MAX_TOKENS_LIMIT - (
n_instruction_tokens + n_query_tokens + max_tokens
)
# Process when `examples` are provided but no `file` is provided.
if examples:
if (max_examples is None or max_examples >= len(examples)) and sum(
n_examples_tokens
) < leftover_token_len:
# If the total length of docs is short enough that we can add all examples, no search call.
selected_indices = list(range(len(examples)))
sorted_doc_infos = [
{"document": i, "text": examples[i][0], "label": examples[i][1]}
for i in selected_indices
]
elif max(n_examples_tokens) + n_query_tokens >= MAX_TOKENS_LIMIT:
# If the prompt and the longest example together go above the limit:
total_tokens = max(n_examples_tokens) + n_query_tokens
raise Exception(
user_message=f"The longest classification example, query and prompt together contain "
f"{total_tokens} tokens, above the limit {MAX_TOKENS_LIMIT} for semantic search. "
f"Please consider shortening your instruction, query or the longest example."
)
else:
# If we can add some context documents but not all of them, we should
# query search endpoint to rank docs by score.
sorted_doc_infos = semantic_search(
search_model,
query_for_search,
examples=[{"text": x, "label": y} for x, y in examples],
max_documents=max_examples,
)
# Per label, we have a list of doc id sorted by its relevancy to the query.
label_to_indices = defaultdict(list)
for idx, d in enumerate(sorted_doc_infos):
label_to_indices[d["label"]].append(idx)
# Do a round robin for each of the different labels, taking the best match for each label.
label_indices = [label_to_indices[label] for label in labels]
mixed_indices = [
i for x in itertools.zip_longest(*label_indices) for i in x if i is not None
]
sorted_doc_infos = [sorted_doc_infos[i] for i in mixed_indices]
# Try to select as many examples as needed to fit into the context
context, sorted_doc_infos = select_by_length(
sorted_doc_infos,
leftover_token_len,
lambda_fn=format_example_fn,
)
prompt = instruction + context + query_prompt
completion_params = {
"engine": model,
"prompt": prompt,
"temperature": temperature,
"logprobs": logprobs,
"logit_bias": logit_bias,
"max_tokens": max_tokens,
"stop": "\n",
"n": 1,
}
completion_resp = openai.Completion.create(
**completion_params,
)
label = completion_resp["choices"][0]["text"]
label = label.split("\n")[0].strip().lower().capitalize()
if label not in labels:
label = "Unknown"
result = dict(
# TODO: Add id for object persistence.
object="classification",
model=completion_resp["model"],
label=label,
completion=completion_resp["id"],
)
result["selected_examples"] = sorted_doc_infos
return result
print(
classifications(
query="this is my test",
model="davinci",
search_model="ada",
examples=[
["this is my test", "davinci"],
["this is other test", "blahblah"],
],
file=None,
labels=["davinci", "blahblah"],
temperature=0.1,
logprobs=0,
max_examples=200,
logit_bias=None,
alternative_query="different test",
max_tokens=16,
)
)

View File

@ -1,74 +0,0 @@
from transformers import GPT2TokenizerFast
import openai
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
docs = ["test1", "asdklgjnasdv", "banana", "lord lollipop"]
query = "apple orang asdansbdausd"
def construct_context(query, document):
return "<|endoftext|>{document}\n\n---\n\nThe above passage is related to: {query}".format(
document=document, query=query
)
def get_score(context, query, log_probs, text_offsets) -> float:
SCORE_MULTIPLIER = 100.0
log_prob = 0
count = 0
cutoff = len(context) - len(query)
for i in range(len(text_offsets) - 1, 0, -1):
log_prob += log_probs[i]
count += 1
if text_offsets[i] <= cutoff and text_offsets[i] != text_offsets[i - 1]:
break
return log_prob / float(count) * SCORE_MULTIPLIER
def search(query, documents, engine):
prompts = [construct_context(query, doc) for doc in [""] + documents]
resps = openai.Completion.create(
model=engine,
prompt=prompts,
temperature=1.0,
top_p=1.0,
max_tokens=0,
logprobs=0,
n=1,
echo=True,
)
resps_by_index = {choice["index"]: choice for choice in resps["choices"]}
scores = [
get_score(
prompts[i],
query,
resps_by_index[i]["logprobs"]["token_logprobs"],
resps_by_index[i]["logprobs"]["text_offset"],
)
for i in range(len(prompts))
]
# Process results
scores = [score - scores[0] for score in scores][1:]
return [
{
"object": "search_result",
"document": document_idx,
"score": round(score, 3),
}
for document_idx, score in enumerate(scores)
]
print(search(query=query, documents=docs, engine="davinci"))