openai-cookbook/examples/azure/archive/embeddings.ipynb

280 lines
7.8 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Azure embeddings example\n",
"\n",
"> Note: There is a newer version of the openai library available. See https://github.com/openai/openai-python/discussions/742\n",
"\n",
"This example will cover embeddings using the Azure OpenAI service."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, we install the necessary dependencies."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"! pip install \"openai>=0.28.1,<1.0.0\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For the following sections to work properly we first have to setup some things. Let's start with the `api_base` and `api_version`. To find your `api_base` go to https://portal.azure.com, find your resource and then under \"Resource Management\" -> \"Keys and Endpoints\" look for the \"Endpoint\" value."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import openai"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"openai.api_version = '2023-05-15'\n",
"openai.api_base = '' # Please add your endpoint here"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We next have to setup the `api_type` and `api_key`. We can either get the key from the portal or we can get it through Microsoft Active Directory Authentication. Depending on this the `api_type` is either `azure` or `azure_ad`."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Setup: Portal\n",
"Let's first look at getting the key from the portal. Go to https://portal.azure.com, find your resource and then under \"Resource Management\" -> \"Keys and Endpoints\" look for one of the \"Keys\" values."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"openai.api_type = 'azure'\n",
"openai.api_key = os.environ[\"OPENAI_API_KEY\"]"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"> Note: In this example, we configured the library to use the Azure API by setting the variables in code. For development, consider setting the environment variables instead:\n",
"\n",
"```\n",
"OPENAI_API_BASE\n",
"OPENAI_API_KEY\n",
"OPENAI_API_TYPE\n",
"OPENAI_API_VERSION\n",
"```"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### (Optional) Setup: Microsoft Active Directory Authentication\n",
"Let's now see how we can get a key via Microsoft Active Directory Authentication. Uncomment the following code if you want to use Active Directory Authentication instead of keys from the portal."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# from azure.identity import DefaultAzureCredential\n",
"\n",
"# default_credential = DefaultAzureCredential()\n",
"# token = default_credential.get_token(\"https://cognitiveservices.azure.com/.default\")\n",
"\n",
"# openai.api_type = 'azure_ad'\n",
"# openai.api_key = token.token"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"A token is valid for a period of time, after which it will expire. To ensure a valid token is sent with every request, you can refresh an expiring token by hooking into requests.auth:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import typing\n",
"import time\n",
"import requests\n",
"if typing.TYPE_CHECKING:\n",
" from azure.core.credentials import TokenCredential\n",
"\n",
"class TokenRefresh(requests.auth.AuthBase):\n",
"\n",
" def __init__(self, credential: \"TokenCredential\", scopes: typing.List[str]) -> None:\n",
" self.credential = credential\n",
" self.scopes = scopes\n",
" self.cached_token: typing.Optional[str] = None\n",
"\n",
" def __call__(self, req):\n",
" if not self.cached_token or self.cached_token.expires_on - time.time() < 300:\n",
" self.cached_token = self.credential.get_token(*self.scopes)\n",
" req.headers[\"Authorization\"] = f\"Bearer {self.cached_token.token}\"\n",
" return req\n",
"\n",
"session = requests.Session()\n",
"session.auth = TokenRefresh(default_credential, [\"https://cognitiveservices.azure.com/.default\"])\n",
"\n",
"openai.requestssession = session"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deployments\n",
"In this section we are going to create a deployment that we can use to create embeddings."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deployments: Create manually\n",
"Let's create a deployment using the `text-similarity-curie-001` model. Create a new deployment by going to your Resource in your portal under \"Resource Management\" -> \"Model deployments\"."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"deployment_id = '' # Fill in the deployment id from the portal here"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deployments: Listing\n",
"Now because creating a new deployment takes a long time, let's look in the subscription for an already finished deployment that succeeded."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print('While deployment running, selecting a completed one that supports embeddings.')\n",
"deployment_id = None\n",
"result = openai.Deployment.list()\n",
"for deployment in result.data:\n",
" if deployment[\"status\"] != \"succeeded\":\n",
" continue\n",
" \n",
" model = openai.Model.retrieve(deployment[\"model\"])\n",
" if model[\"capabilities\"][\"embeddings\"] != True:\n",
" continue\n",
" \n",
" deployment_id = deployment[\"id\"]\n",
" break\n",
"\n",
"if not deployment_id:\n",
" print('No deployment with status: succeeded found.')\n",
"else:\n",
" print(f'Found a succeeded deployment that supports embeddings with id: {deployment_id}.')"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Embeddings\n",
"Now let's send a sample embedding to the deployment."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embeddings = openai.Embedding.create(deployment_id=deployment_id,\n",
" input=\"The food was delicious and the waiter...\")\n",
" \n",
"print(embeddings)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
},
"vscode": {
"interpreter": {
"hash": "3a5103089ab7e7c666b279eeded403fcec76de49a40685dbdfe9f9c78ad97c17"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}