openai-cookbook/examples/fine-tuned_qa/answers_with_ft.py

157 lines
5.2 KiB
Python
Raw Normal View History

2022-10-24 20:46:57 +00:00
"""
Note: To answer questions based on text documents, we recommend the procedure in
[Question Answering using Embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/Question_answering_using_embeddings.ipynb).
Some of the code below may rely on [deprecated API endpoints](https://github.com/openai/openai-cookbook/tree/main/transition_guides_for_deprecated_API_endpoints).
"""
import argparse
import openai
def create_context(
question, search_file_id, max_len=1800, search_model="ada", max_rerank=10
):
"""
Create a context for a question by finding the most similar context from the search file.
:param question: The question
:param search_file_id: The file id of the search file
:param max_len: The maximum length of the returned context (in tokens)
:param search_model: The search model to use
:param max_rerank: The maximum number of reranking
:return: The context
"""
results = openai.Engine(search_model).search(
search_model=search_model,
query=question,
max_rerank=max_rerank,
file=search_file_id,
return_metadata=True,
)
returns = []
cur_len = 0
for result in results["data"]:
cur_len += int(result["metadata"]) + 4
if cur_len > max_len:
break
returns.append(result["text"])
return "\n\n###\n\n".join(returns)
def answer_question(
search_file_id="<SEARCH_FILE_ID>",
fine_tuned_qa_model="<FT_QA_MODEL_ID>",
question="Which country won the European Football championship in 2021?",
max_len=1800,
search_model="ada",
max_rerank=10,
debug=False,
stop_sequence=["\n", "."],
max_tokens=100,
):
"""
Answer a question based on the most similar context from the search file, using your fine-tuned model.
:param question: The question
:param fine_tuned_qa_model: The fine tuned QA model
:param search_file_id: The file id of the search file
:param max_len: The maximum length of the returned context (in tokens)
:param search_model: The search model to use
:param max_rerank: The maximum number of reranking
:param debug: Whether to output debug information
:param stop_sequence: The stop sequence for Q&A model
:param max_tokens: The maximum number of tokens to return
:return: The answer
"""
context = create_context(
question,
search_file_id,
max_len=max_len,
search_model=search_model,
max_rerank=max_rerank,
)
if debug:
print("Context:\n" + context)
print("\n\n")
try:
# fine-tuned models requires model parameter, whereas other models require engine parameter
model_param = (
{"model": fine_tuned_qa_model}
if ":" in fine_tuned_qa_model
and fine_tuned_qa_model.split(":")[1].startswith("ft")
else {"engine": fine_tuned_qa_model}
)
response = openai.Completion.create(
prompt=f"Answer the question based on the context below\n\nText: {context}\n\n---\n\nQuestion: {question}\nAnswer:",
temperature=0,
max_tokens=max_tokens,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
stop=stop_sequence,
**model_param,
)
return response["choices"][0]["text"]
except Exception as e:
print(e)
return ""
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Rudimentary functionality of the answers endpoint with a fine-tuned Q&A model.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--search_file_id", help="Search file id", required=True, type=str
)
parser.add_argument(
"--fine_tuned_qa_model", help="Fine-tuned QA model id", required=True, type=str
)
parser.add_argument(
"--question", help="Question to answer", required=True, type=str
)
parser.add_argument(
"--max_len",
help="Maximum length of the returned context (in tokens)",
default=1800,
type=int,
)
parser.add_argument(
"--search_model", help="Search model to use", default="ada", type=str
)
parser.add_argument(
"--max_rerank",
help="Maximum number of reranking for the search",
default=10,
type=int,
)
parser.add_argument(
"--debug", help="Print debug information (context used)", action="store_true"
)
parser.add_argument(
"--stop_sequence",
help="Stop sequences for the Q&A model",
default=["\n", "."],
nargs="+",
type=str,
)
parser.add_argument(
"--max_tokens",
help="Maximum number of tokens to return",
default=100,
type=int,
)
args = parser.parse_args()
response = answer_question(
search_file_id=args.search_file_id,
fine_tuned_qa_model=args.fine_tuned_qa_model,
question=args.question,
max_len=args.max_len,
search_model=args.search_model,
max_rerank=args.max_rerank,
debug=args.debug,
stop_sequence=args.stop_sequence,
max_tokens=args.max_tokens,
)
print(f"Answer:{response}")