mirror of
https://github.com/openai/openai-cookbook
synced 2024-11-06 03:20:28 +00:00
197 lines
5.4 KiB
Plaintext
197 lines
5.4 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Azure embeddings example\n",
|
||
|
"In this example we'll try to go over all operations for embeddings that can be done using the Azure endpoints. \\\n",
|
||
|
"This example focuses on finetuning but touches on the majority of operations that are also available using the API. This example is meant to be a quick way of showing simple operations and is not meant as a tutorial."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import openai\n",
|
||
|
"from openai import cli"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Setup\n",
|
||
|
"In the following section the endpoint and key need to be set up of the next sections to work. \\\n",
|
||
|
"Please go to https://portal.azure.com, find your resource and then under \"Resource Management\" -> \"Keys and Endpoints\" look for the \"Endpoint\" value and one of the Keys. They will act as api_base and api_key in the code below."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"openai.api_key = '' # Please add your api key here\n",
|
||
|
"openai.api_base = '' # Please add your endpoint here\n",
|
||
|
"\n",
|
||
|
"openai.api_type = 'azure'\n",
|
||
|
"openai.api_version = '2022-03-01-preview' # this may change in the future"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Deployments\n",
|
||
|
"In this section we are going to create a deployment using the finetune model that we just adapted and then used the deployment to create a simple completion operation."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Deployments: Create Manually\n",
|
||
|
"Let's create a deployment using the text-similarity-curie-001 engine. You can create a new deployment by going to your Resource in your portal under \"Resource Management\" -> \"Deployments\"."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### (Optional) Deployments: Create Programatically\n",
|
||
|
"We can also create a deployment using code:"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"model = \"text-similarity-curie-001\"\n",
|
||
|
"\n",
|
||
|
"# Now let's create the deployment\n",
|
||
|
"print(f'Creating a new deployment with model: {model}')\n",
|
||
|
"result = openai.Deployment.create(model=model, scale_settings={\"scale_type\":\"manual\", \"capacity\": 1})\n",
|
||
|
"deployment_id = result[\"id\"]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### (Optional) Deployments: Retrieving\n",
|
||
|
"Now let's check the status of the newly created deployment"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"print(f'Checking for deployment status.')\n",
|
||
|
"resp = openai.Deployment.retrieve(id=deployment_id)\n",
|
||
|
"status = resp[\"status\"]\n",
|
||
|
"print(f'Deployment {deployment_id} is with status: {status}')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Deployments: Listing\n",
|
||
|
"Now because creating a new deployment takes a long time, let's look in the subscription for an already finished deployment that succeeded."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"print('While deployment running, selecting a completed one.')\n",
|
||
|
"deployment_id = None\n",
|
||
|
"result = openai.Deployment.list()\n",
|
||
|
"for deployment in result.data:\n",
|
||
|
" if deployment[\"status\"] == \"succeeded\":\n",
|
||
|
" deployment_id = deployment[\"id\"]\n",
|
||
|
" break\n",
|
||
|
"\n",
|
||
|
"if not deployment_id:\n",
|
||
|
" print('No deployment with status: succeeded found.')\n",
|
||
|
"else:\n",
|
||
|
" print(f'Found a successful deployment with id: {deployment_id}.')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Embeddings\n",
|
||
|
"Now let's send a sample embedding to the deployment."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"embeddings = openai.Embedding.create(engine=deployment_id,\n",
|
||
|
" input=\"The food was delicious and the waiter...\")\n",
|
||
|
" \n",
|
||
|
"print(embeddings)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### (Optional) Deployments: Delete\n",
|
||
|
"Finally let's delete the deployment"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"print(f'Deleting deployment: {deployment_id}')\n",
|
||
|
"openai.Deployment.delete(sid=deployment_id)"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3.9.9 ('openai')",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.9.9"
|
||
|
},
|
||
|
"orig_nbformat": 4,
|
||
|
"vscode": {
|
||
|
"interpreter": {
|
||
|
"hash": "365536dcbde60510dc9073d6b991cd35db2d9bac356a11f5b64279a5e6708b97"
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|