openai-cookbook/apps/enterprise-knowledge-retrieval/database.py

73 lines
1.9 KiB
Python
Raw Normal View History

import ast
from math import isnan
import numpy as np
import pandas as pd
import openai
from redis import Redis as r
from redis.commands.search.query import Query
from config import (
REDIS_DB,
REDIS_HOST,
REDIS_PORT,
VECTOR_FIELD_NAME,
EMBEDDINGS_MODEL,
INDEX_NAME,
)
def get_redis_connection():
redis_client = r(
host=REDIS_HOST, port=REDIS_PORT, db=REDIS_DB, decode_responses=False
)
return redis_client
# Make query to Redis
def query_redis(redis_conn, query, index_name, top_k=5):
## Creates embedding vector from user query
embedded_query = np.array(
openai.Embedding.create(input=query, model=EMBEDDINGS_MODEL,)["data"][
0
]["embedding"],
dtype=np.float32,
).tobytes()
# prepare the query
q = (
Query(f"*=>[KNN {top_k} @{VECTOR_FIELD_NAME} $vec_param AS vector_score]")
.sort_by("vector_score")
.paging(0, top_k)
.return_fields("vector_score", "url", "title", "content", "text_chunk_index")
.dialect(2)
)
params_dict = {"vec_param": embedded_query}
# Execute the query
results = redis_conn.ft(index_name).search(q, query_params=params_dict)
return results
# Get mapped documents from Redis results
def get_redis_results(redis_conn, query, index_name):
# Get most relevant documents from Redis
query_result = query_redis(redis_conn, query, index_name)
# Extract info into a list
query_result_list = []
for i, result in enumerate(query_result.docs):
result_order = i
url = result.url
title = result.title
text = result.content
score = result.vector_score
query_result_list.append((result_order, url, title, text, score))
# Display result as a DataFrame for ease of us
result_df = pd.DataFrame(query_result_list)
result_df.columns = ["id", "url", "title", "result", "certainty"]
return result_df