openai-cookbook/apps/enterprise-knowledge-retrieval/assistant.py

184 lines
6.1 KiB
Python
Raw Normal View History

from langchain.agents import (
Tool,
AgentExecutor,
LLMSingleActionAgent,
AgentOutputParser,
)
from langchain.prompts import BaseChatPromptTemplate
from langchain import SerpAPIWrapper, LLMChain
from langchain.chat_models import ChatOpenAI
from typing import List, Union
from langchain.schema import AgentAction, AgentFinish, HumanMessage
from langchain.memory import ConversationBufferWindowMemory
import openai
import re
import streamlit as st
from database import get_redis_results, get_redis_connection
from config import RETRIEVAL_PROMPT, CHAT_MODEL, INDEX_NAME, SYSTEM_PROMPT
redis_client = get_redis_connection()
def answer_user_question(query):
results = get_redis_results(redis_client, query, INDEX_NAME)
results.to_csv("results.csv")
search_content = ""
for x, y in results.head(3).iterrows():
search_content += y["title"] + "\n" + y["result"] + "\n\n"
retrieval_prepped = RETRIEVAL_PROMPT.format(
SEARCH_QUERY_HERE=query, SEARCH_CONTENT_HERE=search_content
)
retrieval = openai.ChatCompletion.create(
model=CHAT_MODEL,
messages=[{"role": "user", "content": retrieval_prepped}],
max_tokens=500,
)
# Response provided by GPT-3.5
return retrieval["choices"][0]["message"]["content"]
def answer_question_hyde(query):
hyde_prompt = """You are OracleGPT, an helpful expert who answers user questions to the best of their ability.
Provide a confident answer to their question. If you don't know the answer, make the best guess you can based on the context of the question.
User question: {USER_QUESTION_HERE}
Answer:"""
hypothetical_answer = openai.ChatCompletion.create(
model=CHAT_MODEL,
messages=[
{
"role": "user",
"content": hyde_prompt.format(USER_QUESTION_HERE=query),
}
],
)["choices"][0]["message"]["content"]
# st.write(hypothetical_answer)
results = get_redis_results(redis_client, hypothetical_answer, INDEX_NAME)
results.to_csv("results.csv")
search_content = ""
for x, y in results.head(3).iterrows():
search_content += y["title"] + "\n" + y["result"] + "\n\n"
retrieval_prepped = RETRIEVAL_PROMPT.replace("SEARCH_QUERY_HERE", query).replace(
"SEARCH_CONTENT_HERE", search_content
)
retrieval = openai.ChatCompletion.create(
model=CHAT_MODEL,
messages=[{"role": "user", "content": retrieval_prepped}],
max_tokens=500,
)
return retrieval["choices"][0]["message"]["content"]
# Set up a prompt template
class CustomPromptTemplate(BaseChatPromptTemplate):
# The template to use
template: str
# The list of tools available
tools: List[Tool]
def format_messages(self, **kwargs) -> str:
# Get the intermediate steps (AgentAction, Observation tuples)
# Format them in a particular way
intermediate_steps = kwargs.pop("intermediate_steps")
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\nObservation: {observation}\nThought: "
# Set the agent_scratchpad variable to that value
kwargs["agent_scratchpad"] = thoughts
# Create a tools variable from the list of tools provided
kwargs["tools"] = "\n".join(
[f"{tool.name}: {tool.description}" for tool in self.tools]
)
# Create a list of tool names for the tools provided
kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools])
formatted = self.template.format(**kwargs)
return [HumanMessage(content=formatted)]
class CustomOutputParser(AgentOutputParser):
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
# Check if agent should finish
if "Final Answer:" in llm_output:
return AgentFinish(
# Return values is generally always a dictionary with a single `output` key
# It is not recommended to try anything else at the moment :)
return_values={"output": llm_output.split("Final Answer:")[-1].strip()},
log=llm_output,
)
# Parse out the action and action input
regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1).strip()
action_input = match.group(2)
# Return the action and action input
return AgentAction(
tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output
)
def initiate_agent(tools):
prompt = CustomPromptTemplate(
template=SYSTEM_PROMPT,
tools=tools,
# This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically
# The history template includes "history" as an input variable so we can interpolate it into the prompt
input_variables=["input", "intermediate_steps", "history"],
)
# Initiate the memory with k=2 to keep the last two turns
# Provide the memory to the agent
memory = ConversationBufferWindowMemory(k=2)
output_parser = CustomOutputParser()
llm = ChatOpenAI(temperature=0)
# LLM chain consisting of the LLM and a prompt
llm_chain = LLMChain(llm=llm, prompt=prompt)
tool_names = [tool.name for tool in tools]
agent = LLMSingleActionAgent(
llm_chain=llm_chain,
output_parser=output_parser,
stop=["\nObservation:"],
allowed_tools=tool_names,
)
agent_executor = AgentExecutor.from_agent_and_tools(
agent=agent, tools=tools, verbose=True, memory=memory
)
return agent_executor
def ask_gpt(query):
response = openai.ChatCompletion.create(
model=CHAT_MODEL,
messages=[
{
"role": "user",
"content": "Please answer my question.\nQuestion: {}".format(query),
}
],
temperature=0,
)
return response["choices"][0]["message"]["content"]