notcurses/src/demo/animate.c
2021-07-10 17:54:06 -04:00

347 lines
11 KiB
C

#include "demo.h"
// we have a set of cyclic glyphs, with each cycle composed of some number N_c
// of glyphs. our string is made up of each cycle, with each occupying N_c
// cells, each iterating through the N_c states in a round. the string emerges
// from the center of the screen, moving in a spiral.
//
// so, each iteration, start at the head of the chain, and move one forward.
// work back along the path, moving back through the string. if we reach the
// end of the string, clear the cell behind it. eventually, we'll clear the
// entirety of the string, and we're done.
//
// path: the geometry of the spiral is dictated by distance from the center.
//
static const char* cycles[] = {
"🞯🞰🞱🞲🞳🞴", // 6 five-point asterisks
"🞵🞶🞷🞸🞹🞺", // 6 six-point asterisks
"🞻🞼🞽🞾🞿", // 5 eight-point asterisks
"◧◩⬒⬔◨◪⬓⬕", // 8 half-black squares
"◐◓◑◒", // 4 half-black circles
"◢◣◤◥", // 4 black triangles
"◰◳◲◱", // 4 white squares with quadrants
"◴◷◶◵", // 4 white circles with quadrants
"🞅🞆🞇🞈🞉🞊", // 6 white circles
"🞎🞏🞐🞑🞒🞓", // 6 white squares
"▤▥▦▧▨▩", // 6 squares with fill
"⯁⯂⯃⯄", // 4 regular black polyhedra
"⌌⌍⌎⌏", // 4 crops
NULL,
};
typedef enum {
PHASE_SPIRAL,
PHASE_DONE,
} phase_e;
// get the new head position, given the old head position
static void
get_next_head(struct ncplane* std, struct ncplane* left, struct ncplane* right,
int* heady, int* headx, phase_e* phase){
if(*heady == -1 && *headx == -1){
*headx = ncplane_dim_x(std) / 2;
*heady = ncplane_dim_y(std) / 2;
*phase = PHASE_SPIRAL;
return;
}
if(*phase == PHASE_DONE){
return;
}
int lrcol; // left column of right progbar
int rlcol; // right column of left progbar
int trow, brow; // top and bottom
ncplane_abs_yx(right, &trow, &lrcol);
ncplane_abs_yx(left, &brow, &rlcol);
rlcol += ncplane_dim_x(left) - 1;
brow += ncplane_dim_y(left) - 1;
// in the spiral cycle. it's a counterclockwise spiral, come out the bottom,
// calculate distances from the center in both directions. if the absolute
// values are equal, turn counterclockwise, *unless* xdist is positive and
// ydist is negative. in that case, we're coming down the left side, and
// need go down one further, only then turning right. that case is xdist is
// positive, ydist is negative, and xdist + ydist == -1. otherwise, continue
// moving counterclockwise (right if |ydist|>|xdist| and negative y, left
// if |ydist|>|xdist| and positive y, etc.)
int ydist = ncplane_dim_y(std) / 2 - *heady;
int xdist = ncplane_dim_x(std) / 2 - *headx;
if(*heady < trow && xdist < 0){
*phase = PHASE_DONE;
}
if(ydist == 0 && xdist == 0){
++*heady; // move down
}else if(abs(ydist) == abs(xdist)){ // corner
if(ydist < 0 && xdist > 0){ // lower-left, move down
++*heady; // move down
}else if(ydist < 0 && xdist < 0){ // lower-right, move up
--*heady;
}else if(xdist > 0){ // upper-left, move down
++*heady;
}else{ // upper-right, love left
--*headx;
}
}else if(ydist < 0 && xdist > 0 && ydist + xdist == -1){ // new iteration
++*headx;
}else{
if(abs(ydist) > abs(xdist)){
if(ydist < 0){
++*headx;
}else{
--*headx;
}
}else{
if(xdist < 0){
if(--*heady < trow){
*phase = PHASE_DONE;
}
}else{
++*heady;
}
}
}
}
static void
get_next_end(struct ncplane* std, struct ncplane* left, struct ncplane* right,
int* endy, int* endx, phase_e* endphase){
get_next_head(std, left, right, endy, endx, endphase);
}
// determine the total number of moves we will make. this is most easily and
// accurately done by running through a loop.
static int
determine_totalmoves(struct ncplane* std, struct ncplane* left, struct ncplane* right,
int heady, int headx, int endy, int endx, int totallength){
int moves = 0, length = 0;
phase_e headphase, endphase;
do{
get_next_head(std, left, right, &heady, &headx, &headphase);
if(length < totallength){
++length;
}else{
get_next_end(std, left, right, &endy, &endx, &endphase);
}
++moves;
}while(endy != heady || endx != headx);
return moves;
}
// find the 'iters'th EGC in 'utf8', modulo the number of EGCs in 'utf8'
static int
spin_cycle(const char* utf8, int iters){
int offsets[10]; // no cycles longer than this
mbstate_t mbs = { };
int offset = 0;
size_t s;
int o = 0;
while((s = mbrtowc(NULL, utf8 + offset, strlen(utf8 + offset) + 1, &mbs)) != (size_t)-1){
if(s == 0){ // ended with o EGCs
if(o == 0){
return -1;
}
return offsets[iters % o];
}
if(o == sizeof(offsets) / sizeof(*offsets)){
break;
}
offsets[o] = offset;
offset += s;
if(++o == iters){
return offsets[iters % o];
}
}
return -1;
}
static int
drawcycles(struct ncplane* std, struct ncprogbar* left, struct ncprogbar* right,
int length, int endy, int endx, phase_e endphase, uint64_t* channels,
int iters){
const char** c = cycles;
const char* cstr = *c;
int offset = spin_cycle(cstr, iters);
if(offset < 0){
return -1;
}
while(length--){
get_next_head(std, ncprogbar_plane(left), ncprogbar_plane(right),
&endy, &endx, &endphase);
free(ncplane_at_yx(std, endy, endx, NULL, channels));
ncplane_set_bg_rgb(std, ncchannels_bg_rgb(*channels));
ncplane_set_fg_rgb(std, 0xffffff);
int sbytes;
if(ncplane_putegc_yx(std, endy, endx, cstr + offset, &sbytes) < 0){
return -1;
}
offset += sbytes;
if(cstr[offset] == '\0'){
cstr = *++c;
if(cstr == NULL){
c = cycles;
cstr = *c;
}
if((offset = spin_cycle(cstr, iters)) < 0){
return -1;
}
}
}
return 0;
}
static int
animate(struct notcurses* nc, struct ncprogbar* left, struct ncprogbar* right){
int dimy, dimx;
struct ncplane* std = notcurses_stddim_yx(nc, &dimy, &dimx);
int headx = -1;
int heady = -1;
int endy = -1;
int endx = -1;
int totallength = 0;
for(const char** c = cycles ; *c ; ++c){
totallength += ncstrwidth(*c);
}
int totalmoves = determine_totalmoves(std, ncprogbar_plane(left), ncprogbar_plane(right),
heady, headx, endy, endx, totallength);
++totalmoves; // for final render
// headx and heady will not return to their starting location until the
// string begins to disappear. endx and endy won't equal heady/headx until
// the entire string has been consumed.
struct timespec delay;
uint64_t iterns = (timespec_to_ns(&demodelay) * 5) / totalmoves;
phase_e headphase = PHASE_SPIRAL;
phase_e endphase = PHASE_SPIRAL;
int moves = 0;
struct timespec expected;
clock_gettime(CLOCK_MONOTONIC, &expected);
uint64_t expect_ns = timespec_to_ns(&expected);
uint64_t channels = 0;
int length = 1;
do{
get_next_head(std, ncprogbar_plane(left), ncprogbar_plane(right),
&heady, &headx, &headphase);
if(headphase != PHASE_DONE){
if(drawcycles(std, left, right, length, endy, endx, endphase, &channels, moves) < 0){
return -1;
}
}
if(length < totallength){
++length;
}else{
get_next_end(std, ncprogbar_plane(left), ncprogbar_plane(right),
&endy, &endx, &endphase);
ncplane_set_fg_rgb(std, ncchannels_fg_rgb(channels));
ncplane_putwc_yx(std, endy, endx, L'');
}
++moves;
ncprogbar_set_progress(left, ((float)moves) / totalmoves);
ncprogbar_set_progress(right, ((float)moves) / totalmoves);
DEMO_RENDER(nc);
struct timespec now;
expect_ns += iterns;
clock_gettime(CLOCK_MONOTONIC, &now);
uint64_t nowns = timespec_to_ns(&now);
if(nowns < expect_ns){
ns_to_timespec(expect_ns - nowns, &delay);
demo_nanosleep(nc, &delay);
}
}while(endy != heady || endx != headx);
ncprogbar_set_progress(left, 1);
ncprogbar_set_progress(right, 1);
DEMO_RENDER(nc);
return 0;
}
static int
make_pbars(struct ncplane* column, struct ncprogbar** left, struct ncprogbar** right){
int dimy, dimx, coly, colx, colposy, colposx;
struct notcurses* nc = ncplane_notcurses(column);
notcurses_stddim_yx(nc, &dimy, &dimx);
ncplane_dim_yx(column, &coly, &colx);
ncplane_yx(column, &colposy, &colposx);
ncplane_options opts = {
.x = colposx / 4 * -3,
.rows = coly,
.cols = (dimx - colx) / 4,
};
struct ncplane* leftp = ncplane_create(column, &opts);
if(leftp == NULL){
return -1;
}
ncplane_set_base(leftp, " ", 0, NCCHANNELS_INITIALIZER(0xdd, 0xdd, 0xdd, 0x1b, 0x1b, 0x1b));
ncprogbar_options popts = { };
ncchannel_set_rgb8(&popts.brchannel, 0, 0, 0);
ncchannel_set_rgb8(&popts.blchannel, 0, 0xff, 0);
ncchannel_set_rgb8(&popts.urchannel, 0, 0, 0xff);
ncchannel_set_rgb8(&popts.ulchannel, 0, 0xff, 0xff);
*left = ncprogbar_create(leftp, &popts);
if(*left == NULL){
return -1;
}
opts.x = colx + colposx / 4;
struct ncplane* rightp = ncplane_create(column, &opts);
if(rightp == NULL){
return -1;
}
ncplane_set_base(rightp, " ", 0, NCCHANNELS_INITIALIZER(0xdd, 0xdd, 0xdd, 0x1b, 0x1b, 0x1b));
popts.flags = NCPROGBAR_OPTION_RETROGRADE;
*right = ncprogbar_create(rightp, &popts);
if(*right == NULL){
ncprogbar_destroy(*left);
return -1;
}
return 0;
}
int animate_demo(struct notcurses* nc){
if(!notcurses_canutf8(nc)){
return 0;
}
int dimy, dimx;
struct ncplane* n = notcurses_stddim_yx(nc, &dimy, &dimx);
ncplane_erase(n);
ncplane_home(n);
uint32_t tl = 0, tr = 0, bl = 0, br = 0;
ncchannel_set_rgb8(&tl, 0, 0, 0);
ncchannel_set_rgb8(&tr, 0, 0xff, 0);
ncchannel_set_rgb8(&bl, 0, 0, 0xff);
ncchannel_set_rgb8(&br, 0, 0xff, 0xff);
if(ncplane_highgradient(n, tl, tr, bl, br, dimy - 1, dimx - 1) < 0){
return -1;
}
ncplane_set_fg_rgb(n, 0xf0f0a0);
ncplane_set_bg_rgb(n, 0);
int width = 40;
if(width > dimx - 8){
if((width = dimx - 8) <= 0){
return -1;
}
}
int height = 40;
if(height >= dimy - 4){
if((height = dimy - 5) <= 0){
return -1;
}
}
const int planey = (dimy - height) / 2 + 1;
ncplane_options nopts = {
.y = planey,
.x = NCALIGN_CENTER,
.rows = height,
.cols = width,
.flags = NCPLANE_OPTION_HORALIGNED,
};
struct ncplane* column = ncplane_create(n, &nopts);
if(column == NULL){
return -1;
}
struct ncprogbar *pbarleft, *pbarright;
if(make_pbars(column, &pbarleft, &pbarright)){
ncplane_destroy(column);
return -1;
}
ncplane_destroy(column);
int r = animate(nc, pbarleft, pbarright);
ncprogbar_destroy(pbarleft);
ncprogbar_destroy(pbarright);
return r;
}