#ifndef NOTCURSES_EGCPOOL #define NOTCURSES_EGCPOOL #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif // cells only provide storage for a single 7-bit character. if there's anything // more than that, it's spilled into the egcpool, and the cell is given an // offset. when a cell is released, the memory it owned is zeroed out, and // recognizable as use for another cell. typedef struct egcpool { char* pool; // ringbuffer of attached extension storage int poolsize; // total number of bytes in pool int poolused; // bytes actively used, grow when this gets too large int poolwrite; // next place to *look for* a place to write } egcpool; #define POOL_MINIMUM_ALLOC BUFSIZ static inline void egcpool_init(egcpool* p){ memset(p, 0, sizeof(*p)); } static inline int egcpool_grow(egcpool* pool, size_t len){ size_t newsize = pool->poolsize * 2; if(newsize < POOL_MINIMUM_ALLOC){ newsize = POOL_MINIMUM_ALLOC; } while(len > newsize - pool->poolsize){ // ensure we make enough space newsize *= 2; } // offsets only have 24 bits available... if(newsize >= 1u << 24u){ return -1; } // nasty cast here because c++ source might include this header :/ typeof(*pool->pool)* tmp = (typeof(pool->pool))realloc(pool->pool, newsize); if(tmp == NULL){ return -1; } pool->pool = tmp; memset(pool->pool + pool->poolsize, 0, newsize - pool->poolsize); pool->poolsize = newsize; return 0; } // Eat an EGC from the UTF-8 string input. This consists of extracting a // multibyte via mbtowc, then continuing to extract any which have zero // width until hitting another spacing character or a NUL terminator. Writes // the number of columns occupied to '*colcount'. Returns the number of bytes // consumed, not including any NUL terminator. Note that neither the number // of bytes nor columns is necessarily equivalent to the number of decoded code // points. Such are the ways of Unicode. static inline int utf8_egc_len(const char* gcluster, int* colcount){ size_t ret = 0; *colcount = 0; wchar_t wc; int r; mbstate_t mbt; memset(&mbt, 0, sizeof(mbt)); do{ r = mbrtowc(&wc, gcluster, MB_CUR_MAX, &mbt); if(r < 0){ return -1; }else if(r){ int cols = wcwidth(wc); if(cols){ if(*colcount){ // this must be starting a new EGC, exit and do not claim break; } *colcount += cols; } ret += r; gcluster += r; } }while(r); return ret; } // if we're inserting a EGC of |len| bytes, ought we proactively realloc? static inline bool egcpool_alloc_justified(const egcpool* pool, int len){ const int poolfree = pool->poolsize - pool->poolused; // proactively get more space if we have less than 10% free. this doesn't // guarantee that we'll have enough space to insert the string -- we could // theoretically have every 10th byte free, and be unable to write even a // two-byte egc -- so we might have to allocate after an expensive search :/. if(poolfree >= len && poolfree * 10 > pool->poolsize){ return false; } return true; } // stash away the provided UTF8, NUL-terminated grapheme cluster. the cluster // should not be less than 2 bytes (such a cluster should be directly stored in // the cell). returns -1 on error, and otherwise a non-negative 24-bit offset. // 'ulen' must be the number of bytes to lift from egc (utf8_egc_len()). static inline int egcpool_stash(egcpool* pool, const char* egc, size_t ulen){ int len = ulen + 1; // count the NUL terminator if(len <= 2){ // should never be empty, nor a single byte + NUL return -1; } // the first time through, we don't force a grow unless we expect ourselves // to have too little space. once we've done a search, we do force the grow. // we should thus never have more than two iterations of this loop. bool searched = false; // we might have to realloc our underlying pool. it is possible that this EGC // is actually *in* that pool, in which case our pointer will be invalidated. // to be safe, duplicate prior to a realloc, and free along all paths. char* duplicated = NULL; do{ if(egcpool_alloc_justified(pool, len) || searched){ if(!duplicated){ duplicated = strdup(egc); } if(egcpool_grow(pool, len)){ free(duplicated); return -1; } egc = duplicated; } // we now look for a place to lay out this egc. we need |len| zeroes in a // row. starting at pool->poolwrite, look for such a range of unused // memory. if we find it, write it out, and update used count. if we come // back to where we started, force a growth and try again. int curpos = pool->poolwrite; do{ if(curpos == pool->poolsize){ curpos = 0; } if(pool->pool[curpos]){ // can't write if there's stuff here ++curpos; }else if(pool->poolsize - curpos < len){ // can't wrap around if(pool->poolwrite > curpos){ break; } curpos = 0; // can this skip pool->poolwrite? }else{ // promising! let's see if there's enough space int need = len; size_t trial = curpos; while(--need){ if(pool->pool[++trial]){ // alas, not enough space here break; } } if(need == 0){ // found a suitable space, copy it! memcpy(pool->pool + curpos, egc, len - 1); pool->poolwrite = curpos + len; pool->pool[curpos + len - 1] = '\0'; pool->poolused += len; free(duplicated); return curpos; } if(pool->poolwrite > curpos && pool->poolwrite - (len - need) < curpos){ break; } curpos += len - need; } }while(curpos != pool->poolwrite); }while( (searched = !searched) ); free(duplicated); return -1; // should never get here } // remove the egc from the pool. start at offset, and zero out everything until // we find a zero (our own NUL terminator). remove that number of bytes from // the usedcount. static inline void egcpool_release(egcpool* pool, int offset){ size_t freed = 1; // account for free(d) NUL terminator while(pool->pool[offset]){ pool->pool[offset] = '\0'; ++freed; if(++offset == pool->poolsize){ offset = 0; } } pool->poolused -= freed; // FIXME ought we update pool->poolwrite? } static inline void egcpool_dump(egcpool* pool){ free(pool->pool); pool->pool = NULL; pool->poolsize = 0; pool->poolwrite = 0; pool->poolused = 0; } #ifdef __cplusplus } #endif #endif