2
0
mirror of https://github.com/namecoin/ncdns synced 2024-11-18 03:26:00 +00:00
ncdns/generate_nmc_cert/falsehost.go

190 lines
5.9 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Dehydrated certificate modifications Copyright 2015-2017 Jeremy Rand. All
// rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Generate a self-signed X.509 certificate for a TLS server. Outputs to
// 'cert.pem' and 'key.pem' and will overwrite existing files.
// This code has been modified from the stock Go code to generate
// "dehydrated certificates", suitable for inclusion in a Namecoin name.
// Last rebased against Go 1.8.3.
// Future rebases need to rebase both the main flow and the falseHost flow.
package main
import (
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
//"crypto/rsa"
//"crypto/x509"
"crypto/x509/pkix"
"encoding/pem"
//"flag"
"fmt"
"github.com/namecoin/ncdns/x509"
"log"
"math/big"
//"net"
"os"
//"strings"
"time"
)
//var (
// host = flag.String("host", "", "Comma-separated hostnames and IPs to generate a certificate for")
// validFrom = flag.String("start-date", "", "Creation date formatted as Jan 1 15:04:05 2011")
// validFor = flag.Duration("duration", 365*24*time.Hour, "Duration that certificate is valid for")
// isCA = flag.Bool("ca", false, "whether this cert should be its own Certificate Authority")
// rsaBits = flag.Int("rsa-bits", 2048, "Size of RSA key to generate. Ignored if --ecdsa-curve is set")
// ecdsaCurve = flag.String("ecdsa-curve", "", "ECDSA curve to use to generate a key. Valid values are P224, P256, P384, P521")
//)
//func publicKey(priv interface{}) interface{} {
// switch k := priv.(type) {
// case *rsa.PrivateKey:
// return &k.PublicKey
// case *ecdsa.PrivateKey:
// return &k.PublicKey
// default:
// return nil
// }
//}
//func pemBlockForKey(priv interface{}) *pem.Block {
// switch k := priv.(type) {
// case *rsa.PrivateKey:
// return &pem.Block{Type: "RSA PRIVATE KEY", Bytes: x509.MarshalPKCS1PrivateKey(k)}
// case *ecdsa.PrivateKey:
// b, err := x509.MarshalECPrivateKey(k)
// if err != nil {
// fmt.Fprintf(os.Stderr, "Unable to marshal ECDSA private key: %v", err)
// os.Exit(2)
// }
// return &pem.Block{Type: "EC PRIVATE KEY", Bytes: b}
// default:
// return nil
// }
//}
//func main() {
func doFalseHost(parentTemplate x509.Certificate, parentPriv interface{}) {
// flag.Parse()
// if len(*host) == 0 {
// log.Fatalf("Missing required --host parameter")
// }
var priv interface{}
var err error
switch *ecdsaCurve {
case "":
//priv, err = rsa.GenerateKey(rand.Reader, *rsaBits)
log.Fatalf("Missing required --ecdsa-curve parameter")
case "P224":
priv, err = ecdsa.GenerateKey(elliptic.P224(), rand.Reader)
case "P256":
priv, err = ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
case "P384":
priv, err = ecdsa.GenerateKey(elliptic.P384(), rand.Reader)
case "P521":
priv, err = ecdsa.GenerateKey(elliptic.P521(), rand.Reader)
default:
fmt.Fprintf(os.Stderr, "Unrecognized elliptic curve: %q", *ecdsaCurve)
os.Exit(1)
}
if err != nil {
//log.Fatalf("failed to generate private key: %s", err)
log.Fatalf("failed to generate false private key: %s", err)
}
var notBefore time.Time
if len(*validFrom) == 0 {
notBefore = time.Now()
} else {
notBefore, err = time.Parse("Jan 2 15:04:05 2006", *validFrom)
if err != nil {
fmt.Fprintf(os.Stderr, "Failed to parse creation date: %s\n", err)
os.Exit(1)
}
}
notAfter := notBefore.Add(*validFor)
//serialNumberLimit := new(big.Int).Lsh(big.NewInt(1), 128)
//serialNumber, err := rand.Int(rand.Reader, serialNumberLimit)
//if err != nil {
// log.Fatalf("failed to generate serial number: %s", err)
//}
serialNumber := big.NewInt(2)
template := x509.Certificate{
SerialNumber: serialNumber,
Subject: pkix.Name{
//Organization: []string{"Acme Co"},
CommonName: *falseHost,
SerialNumber: "Namecoin TLS Certificate",
},
NotBefore: notBefore,
NotAfter: notAfter,
// x509.KeyUsageKeyEncipherment is used for RSA key exchange,
// but not DHE/ECDHE key exchange. Since everyone should be
// using ECDHE (due to forward secrecy), we disallow
// x509.KeyUsageKeyEncipherment in our template.
//KeyUsage: x509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSignature,
KeyUsage: x509.KeyUsageDigitalSignature,
ExtKeyUsage: []x509.ExtKeyUsage{x509.ExtKeyUsageServerAuth},
BasicConstraintsValid: true,
}
//hosts := strings.Split(*host, ",")
//for _, h := range hosts {
// if ip := net.ParseIP(h); ip != nil {
// template.IPAddresses = append(template.IPAddresses, ip)
// } else {
// template.DNSNames = append(template.DNSNames, h)
template.DNSNames = append(template.DNSNames, *falseHost)
// }
//}
//if *isCA {
// template.IsCA = true
// template.KeyUsage |= x509.KeyUsageCertSign
//}
//derBytes, err := x509.CreateCertificate(rand.Reader, &template, &template, publicKey(priv), priv)
derBytes, err := x509.CreateCertificate(rand.Reader, &template, &parentTemplate, publicKey(priv), parentPriv)
if err != nil {
//log.Fatalf("Failed to create certificate: %s", err)
log.Fatalf("Failed to create false certificate: %s", err)
}
//certOut, err := os.Create("cert.pem")
certOut, err := os.Create("falseCert.pem")
if err != nil {
//log.Fatalf("failed to open cert.pem for writing: %s", err)
log.Fatalf("failed to open falseCert.pem for writing: %s", err)
}
pem.Encode(certOut, &pem.Block{Type: "CERTIFICATE", Bytes: derBytes})
certOut.Close()
//log.Print("written cert.pem\n")
log.Print("written falseCert.pem\n")
//keyOut, err := os.OpenFile("key.pem", os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0600)
keyOut, err := os.OpenFile("falseKey.pem", os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0600)
if err != nil {
//log.Print("failed to open key.pem for writing:", err)
log.Print("failed to open falseKey.pem for writing:", err)
return
}
pem.Encode(keyOut, pemBlockForKey(priv))
keyOut.Close()
//log.Print("written key.pem\n")
log.Print("written falseKey.pem\n")
}