
Themkbook Book

Kenton Hamaluik

Dec 20, 2019

The mkbook Book
©2019 Kenton Hamaluik

https://hamaluik.github.io/mkbook/

 https://hamaluik.github.io/mkbook/

Contents

Preface v

1 Command-line Interface 1
1.1 The Init Command . 2
1.2 The Build Command . 3
1.3 TheWatch Command . 4
1.4 Sample Usages . 5

2 Markdown 7
2.1 CommonMark . 7
2.2 Syntax Highlighting . 9
2.3 PlantUML Diagrams . 15
2.4 KaTeX (Math) Formulas . 16
2.5 Images . 17
2.6 Tables . 18
2.7 Task Lists . 18
2.8 Links . 18

3 Front Matter 21
3.1 Supported Keys . 22

4 Structure 23
4.1 README.md . 23

4.1.1 Sample . 23
4.1.2 Default Values . 24

4.2 Assets . 25
4.3 Documents . 26

5 Customization 29

iii

6 How it Works 31
6.1 Assets . 31
6.2 Styling . 31
6.3 Templates . 32
6.4 Markdown Formatting . 32
6.5 Syntax Highlighting . 32

7 LaTeX Output 35
7.1 Images . 36
7.2 Building the Book . 36

7.2.1 Compiling a Booklet 38

Preface

mkbook is my simpler alternative to mdbook1 which is a great tool, however I
really dislike some of the decisions they took—such as relying on javascript
for highlighting and navigation and including a lot of bells and whistles such
as javascript-based search.

This tool aims to work somewhat similarly to mdbook, but is generally in-
tended to be a more minimal alternative that is customized more towards my
needs and desires than anything else.

If you’re not familiar with mdbook, mkbook is a tool to convert a collection
of Markdown2 files into a static website / book which can be published on-
line. It was created to helpmewrite documentationwithminimum fuss while
presenting it in an easy-to-consume manner.

1https://crates.io/crates/mdbook
2https://commonmark.org/

v

https://crates.io/crates/mdbook
https://commonmark.org/
https://crates.io/crates/mdbook
https://commonmark.org/

Chapter 1

Command-line Interface

mkbookmay be installed using Cargo (cargo install –force –path . in
the mkbook repo directory), and after that it presents a command-line inter-
face:

1

2 CHAPTER 1. COMMAND-LINE INTERFACE

$ mkbook
mkbook 0.3.0
Kenton Hamaluik <kenton@hamaluik.ca>

USAGE:
mkbook [SUBCOMMAND]

FLAGS:
-h, --help

Prints help information

-V, --version
Prints version information

SUBCOMMANDS:
build build the book
help Prints this message or the help of the given

subcommand(s)↪→

init initialize a mkbook directory tree
watch build the book and continually rebuild whenever the

source changes↪→

1.1 The Init Command
The init command is a tool to help you get started, and will create an initial
README.md file and a stub of your first chapter.

1.2. THE BUILD COMMAND 3

$ mkbook init --help
mkbook-init
initialize a mkbook directory tree

USAGE:
mkbook init [OPTIONS]

FLAGS:
-h, --help Prints help information
-V, --version Prints version information

OPTIONS:
-d, --directory <directory> an optional directory to

initialize into [default: src]↪→

1.2 The Build Command
The build command is the primary command for mkbook, and is responsible
for taking the .md files and building the resulting website.

4 CHAPTER 1. COMMAND-LINE INTERFACE

$ mkbook build --help
mkbook-build
build the book

USAGE:
mkbook build [OPTIONS]

FLAGS:
-h, --help Prints help information
-V, --version Prints version information

OPTIONS:
-i, --in <in> an optional directory to take the book sources

from [default: src]↪→

-o, --out <out> an optional directory to render the contents
into [default: book]↪→

1.3 TheWatch Command
The watch command is basically the same as the build command, however
after building it continues to monitor the source directory and if any changes
are made (a file is saved, renamed, removed, created, etc), the entire book is
re-built. In the future, this will hopefully be smarter but for now it just the
whole thing at once. Stop watching using Ctrl + C or sending SIGINT.

1.4. SAMPLE USAGES 5

$ mkbook build --help
mkbook-watch
build the book and continually rebuild whenever the source changes

USAGE:
mkbook watch [OPTIONS]

FLAGS:
-h, --help Prints help information
-V, --version Prints version information

OPTIONS:
-i, --in <in> an optional directory to take the book sources

from [default: src]↪→

-o, --out <out> an optional directory to render the contents
into [default: book]↪→

1.4 Sample Usages
Build the GitHub Pages1 document (this book):

mkbook build -i docs-src -o docs

Build the book, continuallywatching for changes and enabling auto-reloading
in the browser so you can see the book update as you write:

mkbook watch -i docs-src -o docs --reload

Build a LaTeX2 version of the book, then compile it to a PDF3 and open it
in evince4:

1https://pages.github.com/
2https://www.latex-project.org/
3https://en.wikipedia.org/wiki/PDF
4https://wiki.gnome.org/Apps/Evince

https://pages.github.com/
https://www.latex-project.org/
https://en.wikipedia.org/wiki/PDF
https://wiki.gnome.org/Apps/Evince
https://pages.github.com/
https://www.latex-project.org/
https://en.wikipedia.org/wiki/PDF
https://wiki.gnome.org/Apps/Evince

6 CHAPTER 1. COMMAND-LINE INTERFACE

mkdir build
mkbook build -i docs-src -o docs --latex build/book.tex
cd build
xelatex -shell-escape book.tex
xelatex -shell-escape book.tex
evince book.pdf

Chapter 2

Markdown

mkbook relies pretty extensively on Markdown1 for its ease of use. If you’re
not familiar with Markdown, it is a simple markup language that is design to
be easy to read andwrite in plain text, and then (relatively) easy for a computer
to convert into other formats such as HTML or LaTeX.

The above paragraph looks like this:

mkbook relies pretty extensively on
[Markdown](https://daringfireball.net/projects/markdown/) for
its ease of use. If you're not familiar with _Markdown_, it is
a simple markup language that is designed to be easy to read
and write in plain text, and then (relatively) easy for a
computer to convert into other formats such as HTML or LaTeX.

Markdown by itself isn’t quite enough formost purposes, somkbook actually
uses theCommonMark specwith some additional extensions tomake life easier.

2.1 CommonMark
mkbooknominally utilizesCommonMark2with someGFM3 extensions through
the use of the comrak4 crate. In using comrak, a specific set of options are used,
which are listed here:

1https://daringfireball.net/projects/markdown/
2https://commonmark.org/
3https://github.github.com/gfm/
4https://crates.io/crates/comrak

7

https://daringfireball.net/projects/markdown/
https://commonmark.org/
https://github.github.com/gfm/
https://crates.io/crates/comrak
https://daringfireball.net/projects/markdown/
https://commonmark.org/
https://github.github.com/gfm/
https://crates.io/crates/comrak

8 CHAPTER 2. MARKDOWN

let options: ComrakOptions = ComrakOptions {
hardbreaks: false,
smart: true,
github_pre_lang: false,
default_info_string: None,
unsafe_: true,
ext_strikethrough: true,
ext_tagfilter: false,
ext_table: true,
ext_autolink: true,
ext_tasklist: true,
ext_superscript: true,
ext_header_ids: Some(”header”.to_owned()),
ext_footnotes: true,
ext_description_lists: true,
..ComrakOptions::default()

};

Mostly, know that the following extensions are enabled:

• Strikethrough5

• Tables6

• Autolinks7

• Task Lists8

• Superscripts (e = mc^2^. → e = mc².)

• Description Lists:

5https://github.github.com/gfm/#strikethrough-extension-
6https://github.github.com/gfm/#tables-extension-
7https://github.github.com/gfm/#autolinks-extension-
8https://github.github.com/gfm/#task-list-items-extension-

https://github.github.com/gfm/#strikethrough-extension-
https://github.github.com/gfm/#tables-extension-
https://github.github.com/gfm/#autolinks-extension-
https://github.github.com/gfm/#task-list-items-extension-
https://github.github.com/gfm/#strikethrough-extension-
https://github.github.com/gfm/#tables-extension-
https://github.github.com/gfm/#autolinks-extension-
https://github.github.com/gfm/#task-list-items-extension-

2.2. SYNTAX HIGHLIGHTING 9

First term

: Details for the **first term**

Second term

: Details for the **second term**

More details in second paragraph.

2.2 Syntax Highlighting
GFM syntax highlighting is also available by using fenced code tags with a
label denoting the language, as such:

```c++
#include <stdio>

int main() {
std::cout << ”Hello, world!” << std::endl;
return 0;

}
```

which results in:

10 CHAPTER 2. MARKDOWN

#include <stdio>

int main() {
std::cout << ”Hello, world!” << std::endl;
return 0;

}

To denote the language you can either use one the language’s extensions
as the label, or the full name of the language (which is not case-sensitive).

The list of supported languages is currently as follows:

ASP
asa

ActionScript
as

AppleScript
applescript, script editor

Batch File
bat, cmd

BibTeX
bib

Bourne Again Shell (bash)
sh,bash,zsh,fish,.bash_aliases,.bash_completions,.bash_functions,
.bash_login,.bash_logout,.bash_profile,.bash_variables,
.bashrc, .profile, .textmate_init

C
c, h

C#
cs, csx

C++
cpp, cc, cp, cxx, c++, C, h, hh, hpp, hxx, h++, inl, ipp

CSS
css, css.erb, css.liquid

2.2. SYNTAX HIGHLIGHTING 11

Cargo Build Results
“

Clojure
clj

D
d, di

Diff
diff, patch

Erlang
erl, hrl, Emakefile, emakefile

Go
go

Graphviz (DOT)
dot, DOT, gv

Groovy
groovy, gvy, gradle

HTML
html, htm, shtml, xhtml, inc, tmpl, tpl

HTML (ASP)
asp

HTML (Erlang)
yaws

HTML (Rails)
rails, rhtml, erb, html.erb

HTML (Tcl)
adp

Haskell
hs

Haxe
hx, hxsl, hscript

Hxml
hxml

12 CHAPTER 2. MARKDOWN

JSON
json

Java
java, bsh

Java Properties
properties

Java Server Page (JSP)
jsp

JavaDoc
“

JavaScript
js, htc

JavaScript (Rails)
js.erb

LaTeX
tex, ltx

LaTeX Log
“

Lisp
lisp, cl, clisp, l, mud, el, scm, ss, lsp, fasl

Literate Haskell
lhs

Lua
lua

MATLAB
matlab

Make Output
“

Makefile
make, GNUmakefile, makefile, Makefile, OCamlMakefile, mak,
mk

2.2. SYNTAX HIGHLIGHTING 13

Markdown
md, mdown, markdown, markdn

MultiMarkdown
“

NAnt Build File
build

OCaml
ml, mli

OCamllex
mll

OCamlyacc
mly

Objective-C
m, h

Objective-C++
mm, M, h

PHP
php, php3, php4, php5, php7, phps, phpt, phtml

PHP Source
“

Pascal
pas, p, dpr

Perl
pl, pm, pod, t, PL

Plain Text
txt

Python
py, py3, pyw, pyi, pyx, pyx.in, pxd, pxd.in, pxi, pxi.in, rpy, cpy,
SConstruct, Sconstruct, sconstruct, SConscript, gyp, gypi,
Snakefile, wscript

R
R, r, s, S, Rprofile

14 CHAPTER 2. MARKDOWN

R Console
“

Rd (R Documentation)
rd

Regular Expression
re

Regular Expressions (Javascript)
“

Regular Expressions (Python)
“

Ruby
rb, Appfile, Appraisals, Berksfile, Brewfile, capfile, cgi,
Cheffile, config.ru, Deliverfile, Fastfile, fcgi, Gemfile,
gemspec,Guardfile,irbrc,jbuilder,podspec,prawn,rabl,rake,
Rakefile,Rantfile,rbx,rjs,ruby.rail,Scanfile,simplecov,
Snapfile, thor, Thorfile, Vagrantfile

Ruby Haml
haml, sass

Ruby on Rails
rxml, builder

Rust
rs

SCSS
scss

SQL
sql, ddl, dml

SQL (Rails)
erbsql, sql.erb

Sass
sass

Scala
scala, sbt

2.3. PLANTUML DIAGRAMS 15

Shell-Unix-Generic
“

TOML
toml, tml, Cargo.lock, Gopkg.lock, Pipfile

Tcl
tcl

TeX
sty, cls

Textile
textile

XML
xml, xsd, xslt, tld, dtml, rss, opml, svg

YAML
yaml, yml, sublime-syntax

camlp4
“

commands-builtin-shell-bash
“

reStructuredText
rst, rest

2.3 PlantUML Diagrams
If you have PlantUML9 installed and available on your path, mkbook will try
to render any code blocks with a language tag of plantuml as inline SVG
images.

For example:

9http://plantuml.com/

http://plantuml.com/
http://plantuml.com/

16 CHAPTER 2. MARKDOWN

```plantuml
@startuml
Alice -> Bob: Authentication Request
Bob --> Alice: Authentication Response

Alice -> Bob: Another authentication Request
Alice <-- Bob: Another authentication Response
@enduml
```

is rendered as:

Alice

Alice

Bob

Bob

Authentication Request

Authentication Response

Another authentication Request

Another authentication Response

This feature is still experimental, but I find it handy for my books.

2.4 KaTeX (Math) Formulas
If you have KaTeX10 installed and available on your path, mkbook will try to
render any code blocks with a language tag of katex as inline math blocks.

For example:

10https://github.com/KaTeX/KaTeX

https://github.com/KaTeX/KaTeX
https://github.com/KaTeX/KaTeX

2.5. IMAGES 17

```katex
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
```

is rendered as:

x =
−b±

√
b2 − 4ac

2a
(2.1)

This feature is still experimental, but I find it handy for my books.

2.5 Images
To include an image, use the standard markdown format:

![alt](url ”title”)

This will wrap the image in a figure with an associated figcaption
containing the title of the image, as so:

![a bear](https://placebear.com/g/512/256 ”A majestic bear”)

will render as:

Figure 2.1: A majestic bear

18 CHAPTER 2. MARKDOWN

2.6 Tables
Tables are created using the pipe syntax11, for example the following:

Tables	Are	Cool
col 3 is	right-aligned	$1600
col 2 is	centered	$12
zebra stripes	are neat	$1

renders as:

Tables Are Cool
col 3 is right-aligned $1600
col 2 is centered $12
zebra stripes are neat $1

2.7 Task Lists
You can also use GFM12-style task lists13 to indicate a TODO list:

• □ a task list item

• □ list syntax required

• □ normal formatting

• □ incomplete

• ✓□ completed

2.8 Links
mkbook uses standardMarkDown notation for links:

[link text](link url)

Links can be separated into three types:

11https://github.github.com/gfm/#tables-extension-
12https://help.github.com/en/github/writing-on-github
13https://github.blog/2013-01-09-task-lists-in-gfm-issues-pulls-comments/

https://github.github.com/gfm/#tables-extension-
https://help.github.com/en/github/writing-on-github
https://github.blog/2013-01-09-task-lists-in-gfm-issues-pulls-comments/
https://github.github.com/gfm/#tables-extension-
https://help.github.com/en/github/writing-on-github
https://github.blog/2013-01-09-task-lists-in-gfm-issues-pulls-comments/

2.8. LINKS 19

1. External links (prepended by http:// or https://)

2. Internal links (relative path names)

3. Reference links (prepended by ref:// and then followed by the chap-
ter title) to refer to other chapters in the book**

Note: Reference links aren’t implemented yet!

20 CHAPTER 2. MARKDOWN

Chapter 3

FrontMatter

Each .md file can optionally contain a header with metadata describing the
document. If the header isn’t present, or if any keys aremissing, default values
will be used.

To insert a header into a .md file, insert three dashes (—), followed by a
new-line, followed by the front matter contents, followed by a newline, then
another three dashes and a new-line. The metadata is in the TOML1 format,
so for example the front-matter (and first line) for a file could look like this:

1https://github.com/toml-lang/toml

21

https://github.com/toml-lang/toml
https://github.com/toml-lang/toml

22 CHAPTER 3. FRONT MATTER

title = ”Front Matter”
author = ”Kenton Hamaluik”
pubdate = 2019-11-29T15:22:00-07:00

Each `.md` file can optionally contain a header with metadata
describing the document. If the header isn't present, or if any
keys are missing, default values will be used.

↪→

↪→

3.1 Supported Keys
The list of supported keys is subject to change, but for now it is as follows:

title
A human-readable title for the document (defaults to the filename)

author
The author (or authors) who wrote the chapter (defaults to “Anony-
mous”)

pubdate
TheRFC 33392 timestamp of when the chapter was published (defaults
to the time at build)

url
The relative URL of the file, defaults to the generated route (you prob-
ably shouldn’t set this one)

2http://tools.ietf.org/html/rfc3339

http://tools.ietf.org/html/rfc3339
http://tools.ietf.org/html/rfc3339

Chapter 4

Structure

mkbook follows a fairly simple directory structure for now, with a README.md
file declaring the book’s metadata, and .md files defining each chapter of the
book.

4.1 README.md
mkbook generally requires a README.md file to reside in your source directory.
This file is responsible for defining the metadata associated with your book:

• The book’s title (title)

• The book’s author (author)

• The publication date (pubdate)

• The canonical URL for the book (url)

• A markdown-formatted description of the book

If the README.md file or any of the entries are missing, default values will
be used. The README.md file should be formatted as any other page, with the
title, author, pubdate, andurl specified in the frontmatter, and the book
description theMarkdown contents of the README.md file.

4.1.1 Sample

23

24 CHAPTER 4. STRUCTURE

title = ”The mkbook Book”
author = ”Kenton Hamaluik”
url = ”https://hamaluik.github.io/mkbook/”

mkbook is my simpler alternative to
[mdbook](https://crates.io/crates/mdbook)↪→

which is a great tool, but for which I really dislike some of the
decisions they↪→

took, such as relying on javascript for highlighting and navigation,
and↪→

including a lot of bells and whistles such as javascript-based
search.↪→

This tool aims to work somewhat similarly to _mdbook_, but is
generally intended↪→

to be a more minimal alternative that is customized more towards my
needs and↪→

desires than anything else.

4.1.2 Default Values

title
“My Cool Book”

author
“Anonymous”

pubdate
The date the book was built from the command line, in UTC time

url
“”

description
“”

4.2. ASSETS 25

4.2 Assets
Any files in the src directory which are not included in .gitignore and do
not end in the extension .md will be copied to the output folder. You can use
this to include images, files, etc, for example the following image is an asset
bundled with the book:

26 CHAPTER 4. STRUCTURE

![chapter-six](book-chapter-six-5834.jpg ”Photo by Kaboompics.com
from Pexels”)↪→

Figure 4.1: Photo by Kaboompics.com from Pexels

4.3 Documents
mkbook works on mostly a flat directory structure, however one level of sub-
directories are supported in order to create sections within chapters. Files
that don’t end in a .md extension are completely ignored. Each .md file in the
root source directly is it’s own chapter. To create chapters with sub-sections,
create a sub-directory in the root directory and then create a README.md
file, which will become the root of the chapter, with all .md files in the sub-
directory becoming sections in the chapter. The title in the README.md
file’s frontmatter will be used as the name of the chapter.

The order of the book is based on the alphabetical order of the file names
(actually it’s based on Rust’s implementation of PartialOrd for str1). Thus,

1https://doc.rust-lang.org/std/cmp/trait.PartialOrd.html#
impl-PartialOrd%3Cstr%3E

https://doc.rust-lang.org/std/cmp/trait.PartialOrd.html#impl-PartialOrd%3Cstr%3E
https://doc.rust-lang.org/std/cmp/trait.PartialOrd.html#impl-PartialOrd%3Cstr%3E
https://doc.rust-lang.org/std/cmp/trait.PartialOrd.html#impl-PartialOrd%3Cstr%3E

4.3. DOCUMENTS 27

it is recommended to lay out your book chapters with manual numbering of
the file names, as such:

src/
├── README.md
├── 00-foreword.md
├── 01-introduction.md
├── my-picture.jpg
└── 02-my-first-chapter

├── README.md
├── 01-my-first-section.md
├── 02-my-second-section.md
└── etc...

An index and navigation will be automatically generated from these files,
taking the information for each file from it’s front-matter.

28 CHAPTER 4. STRUCTURE

Chapter 5

Customization

There isn’t any way to customize the templates nor the CSS yet, though I will
investigate this if the need arises. This is because both the templates and CSS
are currently compiled at compile-time instead of run-time.

29

30 CHAPTER 5. CUSTOMIZATION

Chapter 6

How itWorks

mkbook generates a completely static, javascript-free website from a series of
Markdown files. All of the layout and styling is controlled purely by hand-
crafted CSS specific to this book’s purpose.

6.1 Assets
mkbook currently bundles two assetswhich getwritten into the book directory:
favicon.ico, and icons.svg. favicon.ico is the Font Awesome 5 book
icon1, andicons.svg contains 3 FontAwesome 52 arrow icons: arrow-left3,
arrow-right4, and arrow-up5 which are used for navigation. These files are
compiled into the mkbook binary using the include_bytes! macro6, and
written to the output folder on each build.

6.2 Styling
mkbook utilizes Sass7 to define it’s styles; you can view the sources on github8.
In mkbook’s build script, the styles are compiled from their native .scss for-

1https://fontawesome.com/icons/book?style=solid
2https://fontawesome.com/
3https://fontawesome.com/icons/arrow-left?style=solid
4https://fontawesome.com/icons/arrow-right?style=solid
5https://fontawesome.com/icons/arrow-up?style=solid
6https://doc.rust-lang.org/std/macro.include_bytes.html
7https://sass-lang.com/
8https://github.com/hamaluik/mkbook/tree/master/style

31

https://fontawesome.com/icons/book?style=solid
https://fontawesome.com/icons/book?style=solid
https://fontawesome.com/
https://fontawesome.com/icons/arrow-left?style=solid
https://fontawesome.com/icons/arrow-right?style=solid
https://fontawesome.com/icons/arrow-up?style=solid
https://doc.rust-lang.org/std/macro.include_bytes.html
https://sass-lang.com/
https://github.com/hamaluik/mkbook/tree/master/style
https://fontawesome.com/icons/book?style=solid
https://fontawesome.com/
https://fontawesome.com/icons/arrow-left?style=solid
https://fontawesome.com/icons/arrow-right?style=solid
https://fontawesome.com/icons/arrow-up?style=solid
https://doc.rust-lang.org/std/macro.include_bytes.html
https://sass-lang.com/
https://github.com/hamaluik/mkbook/tree/master/style

32 CHAPTER 6. HOW IT WORKS

mat into a single, compressed .css file using sass-rs9. The resulting .css file
is then bundled into the binary using the include_str! macro10. When a
book is generated, this .css is written to the output folder as style.css,
where it is included by each generated .html file.

6.3 Templates
mkbook contains two template files: one for the index, and one for each page
/ chapter, and uses Askama11 to render the templates. Since the Askama tem-
plates are compiled when mkbook is compiled, it is not currently possible to
change the templates at run time. You can view the sources for these tem-
plates on github12.

6.4 Markdown Formatting
Markdown is formatted usiing comrak13 with some specific options, see the
Markdown chapter14 for more information.

6.5 Syntax Highlighting
Code is syntax-highlighted using syntect15 with the default langauges and
the base16-eighties colour scheme. Some additional languages above the
base list supported by syntect have been aded:

• haxe16

• hxml17

• sass18

• scss19

9https://crates.io/crates/sass-rs
10https://doc.rust-lang.org/std/macro.include_str.html
11https://crates.io/crates/askama
12https://github.com/hamaluik/mkbook/tree/master/templates
13https://crates.io/crates/comrak
1402-markdown.html
15https://crates.io/crates/syntect
16https://haxe.org/
17https://haxe.org/manual/compiler-usage-hxml.html
18https://sass-lang.com/documentation/syntax#the-indented-syntax
19https://sass-lang.com/documentation/syntax

https://crates.io/crates/sass-rs
https://doc.rust-lang.org/std/macro.include_str.html
https://crates.io/crates/askama
https://github.com/hamaluik/mkbook/tree/master/templates
https://crates.io/crates/comrak
02-markdown.html
https://crates.io/crates/syntect
https://haxe.org/
https://haxe.org/manual/compiler-usage-hxml.html
https://sass-lang.com/documentation/syntax#the-indented-syntax
https://sass-lang.com/documentation/syntax
https://crates.io/crates/sass-rs
https://doc.rust-lang.org/std/macro.include_str.html
https://crates.io/crates/askama
https://github.com/hamaluik/mkbook/tree/master/templates
https://crates.io/crates/comrak
02-markdown.html
https://crates.io/crates/syntect
https://haxe.org/
https://haxe.org/manual/compiler-usage-hxml.html
https://sass-lang.com/documentation/syntax#the-indented-syntax
https://sass-lang.com/documentation/syntax

6.5. SYNTAX HIGHLIGHTING 33

• toml20

20https://github.com/toml-lang/toml

https://github.com/toml-lang/toml
https://github.com/toml-lang/toml

34 CHAPTER 6. HOW IT WORKS

Chapter 7

LaTeXOutput

mkbook can also export a LaTeX1 file which can be used to convert your book
to a beatiful, ready-to-print PDF2. This feature is still under heavy develop-
ment as it’s not quite as smooth as I would like, and the generated .tex doc-
ument is perhaps a bit too customized—I’m still exploring this.

For now, however, you can convert your book into a single .tex file with
the following command which will create the file ./print/book.tex along
with any images needed to render the book:

1https://www.latex-project.org/
2https://en.wikipedia.org/wiki/PDF

35

https://www.latex-project.org/
https://en.wikipedia.org/wiki/PDF
https://www.latex-project.org/
https://en.wikipedia.org/wiki/PDF

36 CHAPTER 7. LATEX OUTPUT

mkbook build -l ./print/book.tex

Note that this command is more about preparing a .tex file that you can
then further customize for your own book than having a complete, ready-
to-go PDF that is entirely your own—the current LaTeX template that gets
generated works for me but it may not work for you.

7.1 Images
If an image in the document is an external image (i.e. it starts with http://
or https://),mkbookwill attempt to download the image the same directory
that the generated LaTeX document resides in. If it cannot do so, it will tell
you. If, on the other hand, the image is in the source tree, it will be copied over
the sameway that any other asset is and should be available to the LaTeX file.

Similar to this,mkbookwill attempt to render any plantuml code sections
into .svg files which also get included in the book.

7.2 Building the Book
The current LaTeX template requires the following packages to be installed:

• ulem3

• fontspec4

• sectsty5

• xcolor6

• minted7

• amsmath8

• amssymb9

3https://ctan.org/pkg/ulem
4https://ctan.org/pkg/fontspec
5https://ctan.org/pkg/sectsty
6https://ctan.org/pkg/xcolor
7https://ctan.org/pkg/minted
8https://ctan.org/pkg/amsmath
9https://ctan.org/pkg/amssymb

https://ctan.org/pkg/ulem
https://ctan.org/pkg/fontspec
https://ctan.org/pkg/sectsty
https://ctan.org/pkg/xcolor
https://ctan.org/pkg/minted
https://ctan.org/pkg/amsmath
https://ctan.org/pkg/amssymb
https://ctan.org/pkg/ulem
https://ctan.org/pkg/fontspec
https://ctan.org/pkg/sectsty
https://ctan.org/pkg/xcolor
https://ctan.org/pkg/minted
https://ctan.org/pkg/amsmath
https://ctan.org/pkg/amssymb

7.2. BUILDING THE BOOK 37

• enumitem10

• textcomp11

• graphicx12

• float13

• svg14

• menukeys15

The template also requires XeTeX16 and the following fonts to be available on
your system:

• Crimson17

• Poppins18

• Source Code Pro19

Finally, in order to color the source code, you must have Pygments20 installed
and the pygmentize executable must be available on your path.

If youmeet all these requirements, you can build the book using xelatex
(better yet, use latexmk). Assuming you built the book.tex file in the print
directory as above:

10https://ctan.org/pkg/enumitem
11https://ctan.org/pkg/textcomp
12https://ctan.org/pkg/graphicx
13https://ctan.org/pkg/float
14https://ctan.org/pkg/svg
15https://ctan.org/pkg/svg
16https://www.tug.org/xetex/
17https://github.com/skosch/Crimson
18https://www.fontsquirrel.com/fonts/poppins
19https://github.com/adobe-fonts/source-code-pro
20https://pygments.org/

https://ctan.org/pkg/enumitem
https://ctan.org/pkg/textcomp
https://ctan.org/pkg/graphicx
https://ctan.org/pkg/float
https://ctan.org/pkg/svg
https://ctan.org/pkg/svg
https://www.tug.org/xetex/
https://github.com/skosch/Crimson
https://www.fontsquirrel.com/fonts/poppins
https://github.com/adobe-fonts/source-code-pro
https://pygments.org/
https://ctan.org/pkg/enumitem
https://ctan.org/pkg/textcomp
https://ctan.org/pkg/graphicx
https://ctan.org/pkg/float
https://ctan.org/pkg/svg
https://ctan.org/pkg/svg
https://www.tug.org/xetex/
https://github.com/skosch/Crimson
https://www.fontsquirrel.com/fonts/poppins
https://github.com/adobe-fonts/source-code-pro
https://pygments.org/

38 CHAPTER 7. LATEX OUTPUT

cd print
latexmk -xelatex -shell-escape book.tex

Note that the -shell-escape argument is required in order to get Pyg-
ments to colour your source code, and the xelatex command is run twice in
order to properly build the table of contents.

Note also that in the current template, the pages that are created are 5.5
inches by 8 inches. This is to facilitate booklet printing on North American
letter paper. Feel free to change this in the generated book.tex file before
compiling if you need to.

7.2.1 Compiling a Booklet
If you want to easily print this book as a booklet, you can take one more step
to arrange the pages so that a simple duplex print on any printer will produce
signatures that you can easily bind yourself (there are many tutorials online
for doing this, I recommend Easy paperback book binding how-to21 by Rubén
Berenguel).

The first step is to create a file alongside your compiled book.pdf file
called printbook.tex with the contents as such:

21https://mostlymaths.net/2009/04/easy-paperback-book-binding-how-to.
html/

https://mostlymaths.net/2009/04/easy-paperback-book-binding-how-to.html/
https://mostlymaths.net/2009/04/easy-paperback-book-binding-how-to.html/
https://mostlymaths.net/2009/04/easy-paperback-book-binding-how-to.html/

7.2. BUILDING THE BOOK 39

\documentclass[letterpaper]{article}
\usepackage[final]{pdfpages}
\begin{document}
\includepdf[pages=-,nup=1x2,landscape,signature=32]{book.pdf}
\end{document}

You can change the value of signature as you like, but keep it a multiple
of 4. The signature22 is the number of pages (not sheets of paper) which get
combined into a “mini-booklet”, and the final book is a combination of all
of the signatures (“mini-booklets”) to make the full book. Essentially, if you
divide this number by 4, you’ll get the number of sheets of paper that you’ll
have to staple together at a time. For a signature of 32 pages, this will mean
stapling together 8 pages at a time.

Note that if you have a relatively short book, it may be advantageous to
just do all of the book’s pages into one signature, in this case make the sig-
nature the next multiple-of-four value higher than the total number of sheets
in the book.pdf file. For example: if book.pdf contains 45 pages, make
signature=48 to put everything into a single signature.

Finally, compile printbook.tex using pdflatex:

pdflatex printbook.tex

As a sample, you can view the compiled book23 and printbook24 files for
this book to see how this can turn out.

22https://en.wikipedia.org/wiki/Section_(bookbinding)
23book.pdf
24printbook.pdf

https://en.wikipedia.org/wiki/Section_(bookbinding)
https://en.wikipedia.org/wiki/Section_(bookbinding)
book.pdf
printbook.pdf

	Preface
	 Command-line Interface
	The Init Command
	The Build Command
	The Watch Command
	Sample Usages

	 Markdown
	 CommonMark
	 Syntax Highlighting
	 PlantUML Diagrams
	 KaTeX (Math) Formulas
	 Images
	 Tables
	 Task Lists
	 Links

	 Front Matter
	Supported Keys

	 Structure
	README.md
	Sample
	Default Values

	Assets
	Documents

	 Customization
	 How it Works
	Assets
	Styling
	Templates
	Markdown Formatting
	Syntax Highlighting

	 LaTeX Output
	Images
	Building the Book
	Compiling a Booklet

