2
0
mirror of https://github.com/42wim/matterbridge synced 2024-11-15 06:12:55 +00:00
matterbridge/vendor/github.com/kettek/apng/writer.go
Benau 53cafa9f3d
Convert .tgs with go libraries (and cgo) (telegram) (#1569)
This commit adds support for go/cgo tgs conversion when building with the -tags `cgo`
The default binaries are still "pure" go and uses the old way of converting.

* Move lottie_convert.py conversion code to its own file

* Add optional libtgsconverter

* Update vendor

* Apply suggestions from code review

* Update bridge/helper/libtgsconverter.go

Co-authored-by: Wim <wim@42.be>
2021-08-24 22:32:50 +02:00

714 lines
16 KiB
Go

// Original PNG code Copyright 2009 The Go Authors.
// Additional APNG enhancements Copyright 2018 Ketchetwahmeegwun
// Tecumseh Southall / kts of kettek.
// All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package apng
import (
"bufio"
"compress/zlib"
"encoding/binary"
"hash/crc32"
"image"
"image/color"
"io"
"strconv"
)
// Encoder configures encoding PNG images.
type Encoder struct {
CompressionLevel CompressionLevel
// BufferPool optionally specifies a buffer pool to get temporary
// EncoderBuffers when encoding an image.
BufferPool EncoderBufferPool
}
// EncoderBufferPool is an interface for getting and returning temporary
// instances of the EncoderBuffer struct. This can be used to reuse buffers
// when encoding multiple images.
type EncoderBufferPool interface {
Get() *EncoderBuffer
Put(*EncoderBuffer)
}
// EncoderBuffer holds the buffers used for encoding PNG images.
type EncoderBuffer encoder
type encoder struct {
enc *Encoder
w io.Writer
a APNG
write_type int // 0 = IDAT, 1 = fdAT
seq int
cb int
err error
header [8]byte
footer [4]byte
tmp [4 * 256]byte
cr [nFilter][]uint8
pr []uint8
zw *zlib.Writer
zwLevel int
bw *bufio.Writer
}
type CompressionLevel int
const (
DefaultCompression CompressionLevel = 0
NoCompression CompressionLevel = -1
BestSpeed CompressionLevel = -2
BestCompression CompressionLevel = -3
// Positive CompressionLevel values are reserved to mean a numeric zlib
// compression level, although that is not implemented yet.
)
type opaquer interface {
Opaque() bool
}
// Returns whether or not the image is fully opaque.
func opaque(m image.Image) bool {
if o, ok := m.(opaquer); ok {
return o.Opaque()
}
b := m.Bounds()
for y := b.Min.Y; y < b.Max.Y; y++ {
for x := b.Min.X; x < b.Max.X; x++ {
_, _, _, a := m.At(x, y).RGBA()
if a != 0xffff {
return false
}
}
}
return true
}
// The absolute value of a byte interpreted as a signed int8.
func abs8(d uint8) int {
if d < 128 {
return int(d)
}
return 256 - int(d)
}
func (e *encoder) writeChunk(b []byte, name string) {
if e.err != nil {
return
}
n := uint32(len(b))
if int(n) != len(b) {
e.err = UnsupportedError(name + " chunk is too large: " + strconv.Itoa(len(b)))
return
}
binary.BigEndian.PutUint32(e.header[:4], n)
e.header[4] = name[0]
e.header[5] = name[1]
e.header[6] = name[2]
e.header[7] = name[3]
crc := crc32.NewIEEE()
crc.Write(e.header[4:8])
crc.Write(b)
binary.BigEndian.PutUint32(e.footer[:4], crc.Sum32())
_, e.err = e.w.Write(e.header[:8])
if e.err != nil {
return
}
_, e.err = e.w.Write(b)
if e.err != nil {
return
}
_, e.err = e.w.Write(e.footer[:4])
}
func (e *encoder) writeIHDR() {
b := e.a.Frames[0].Image.Bounds()
binary.BigEndian.PutUint32(e.tmp[0:4], uint32(b.Dx()))
binary.BigEndian.PutUint32(e.tmp[4:8], uint32(b.Dy()))
// Set bit depth and color type.
switch e.cb {
case cbG8:
e.tmp[8] = 8
e.tmp[9] = ctGrayscale
case cbTC8:
e.tmp[8] = 8
e.tmp[9] = ctTrueColor
case cbP8:
e.tmp[8] = 8
e.tmp[9] = ctPaletted
case cbP4:
e.tmp[8] = 4
e.tmp[9] = ctPaletted
case cbP2:
e.tmp[8] = 2
e.tmp[9] = ctPaletted
case cbP1:
e.tmp[8] = 1
e.tmp[9] = ctPaletted
case cbTCA8:
e.tmp[8] = 8
e.tmp[9] = ctTrueColorAlpha
case cbG16:
e.tmp[8] = 16
e.tmp[9] = ctGrayscale
case cbTC16:
e.tmp[8] = 16
e.tmp[9] = ctTrueColor
case cbTCA16:
e.tmp[8] = 16
e.tmp[9] = ctTrueColorAlpha
}
e.tmp[10] = 0 // default compression method
e.tmp[11] = 0 // default filter method
e.tmp[12] = 0 // non-interlaced
e.writeChunk(e.tmp[:13], "IHDR")
}
func (e *encoder) writeacTL() {
binary.BigEndian.PutUint32(e.tmp[0:4], uint32(len(e.a.Frames)))
binary.BigEndian.PutUint32(e.tmp[4:8], uint32(e.a.LoopCount))
e.writeChunk(e.tmp[:8], "acTL")
}
func (e *encoder) writefcTL(f Frame) {
binary.BigEndian.PutUint32(e.tmp[0:4], uint32(e.seq))
e.seq = e.seq + 1
b := f.Image.Bounds()
binary.BigEndian.PutUint32(e.tmp[4:8], uint32(b.Dx()))
binary.BigEndian.PutUint32(e.tmp[8:12], uint32(b.Dy()))
binary.BigEndian.PutUint32(e.tmp[12:16], uint32(f.XOffset))
binary.BigEndian.PutUint32(e.tmp[16:20], uint32(f.YOffset))
binary.BigEndian.PutUint16(e.tmp[20:22], uint16(f.DelayNumerator))
binary.BigEndian.PutUint16(e.tmp[22:24], uint16(f.DelayDenominator))
e.tmp[24] = f.DisposeOp
e.tmp[25] = f.BlendOp
e.writeChunk(e.tmp[:26], "fcTL")
}
func (e *encoder) writefdATs(f Frame) {
e.write_type = 1
if e.err != nil {
return
}
if e.bw == nil {
e.bw = bufio.NewWriterSize(e, 1<<15)
} else {
e.bw.Reset(e)
}
e.err = e.writeImage(e.bw, f.Image, e.cb, levelToZlib(e.enc.CompressionLevel))
if e.err != nil {
return
}
e.err = e.bw.Flush()
}
func (e *encoder) writePLTEAndTRNS(p color.Palette) {
if len(p) < 1 || len(p) > 256 {
e.err = FormatError("bad palette length: " + strconv.Itoa(len(p)))
return
}
last := -1
for i, c := range p {
c1 := color.NRGBAModel.Convert(c).(color.NRGBA)
e.tmp[3*i+0] = c1.R
e.tmp[3*i+1] = c1.G
e.tmp[3*i+2] = c1.B
if c1.A != 0xff {
last = i
}
e.tmp[3*256+i] = c1.A
}
e.writeChunk(e.tmp[:3*len(p)], "PLTE")
if last != -1 {
e.writeChunk(e.tmp[3*256:3*256+1+last], "tRNS")
}
}
// An encoder is an io.Writer that satisfies writes by writing PNG IDAT chunks,
// including an 8-byte header and 4-byte CRC checksum per Write call. Such calls
// should be relatively infrequent, since writeIDATs uses a bufio.Writer.
//
// This method should only be called from writeIDATs (via writeImage).
// No other code should treat an encoder as an io.Writer.
func (e *encoder) Write(b []byte) (int, error) {
if e.write_type == 0 {
e.writeChunk(b, "IDAT")
} else {
c := make([]byte, 4)
binary.BigEndian.PutUint32(c[0:4], uint32(e.seq))
e.seq = e.seq + 1
b = append(c, b...)
e.writeChunk(b, "fdAT")
}
if e.err != nil {
return 0, e.err
}
return len(b), nil
}
// Chooses the filter to use for encoding the current row, and applies it.
// The return value is the index of the filter and also of the row in cr that has had it applied.
func filter(cr *[nFilter][]byte, pr []byte, bpp int) int {
// We try all five filter types, and pick the one that minimizes the sum of absolute differences.
// This is the same heuristic that libpng uses, although the filters are attempted in order of
// estimated most likely to be minimal (ftUp, ftPaeth, ftNone, ftSub, ftAverage), rather than
// in their enumeration order (ftNone, ftSub, ftUp, ftAverage, ftPaeth).
cdat0 := cr[0][1:]
cdat1 := cr[1][1:]
cdat2 := cr[2][1:]
cdat3 := cr[3][1:]
cdat4 := cr[4][1:]
pdat := pr[1:]
n := len(cdat0)
// The up filter.
sum := 0
for i := 0; i < n; i++ {
cdat2[i] = cdat0[i] - pdat[i]
sum += abs8(cdat2[i])
}
best := sum
filter := ftUp
// The Paeth filter.
sum = 0
for i := 0; i < bpp; i++ {
cdat4[i] = cdat0[i] - pdat[i]
sum += abs8(cdat4[i])
}
for i := bpp; i < n; i++ {
cdat4[i] = cdat0[i] - paeth(cdat0[i-bpp], pdat[i], pdat[i-bpp])
sum += abs8(cdat4[i])
if sum >= best {
break
}
}
if sum < best {
best = sum
filter = ftPaeth
}
// The none filter.
sum = 0
for i := 0; i < n; i++ {
sum += abs8(cdat0[i])
if sum >= best {
break
}
}
if sum < best {
best = sum
filter = ftNone
}
// The sub filter.
sum = 0
for i := 0; i < bpp; i++ {
cdat1[i] = cdat0[i]
sum += abs8(cdat1[i])
}
for i := bpp; i < n; i++ {
cdat1[i] = cdat0[i] - cdat0[i-bpp]
sum += abs8(cdat1[i])
if sum >= best {
break
}
}
if sum < best {
best = sum
filter = ftSub
}
// The average filter.
sum = 0
for i := 0; i < bpp; i++ {
cdat3[i] = cdat0[i] - pdat[i]/2
sum += abs8(cdat3[i])
}
for i := bpp; i < n; i++ {
cdat3[i] = cdat0[i] - uint8((int(cdat0[i-bpp])+int(pdat[i]))/2)
sum += abs8(cdat3[i])
if sum >= best {
break
}
}
if sum < best {
best = sum
filter = ftAverage
}
return filter
}
func zeroMemory(v []uint8) {
for i := range v {
v[i] = 0
}
}
func (e *encoder) writeImage(w io.Writer, m image.Image, cb int, level int) error {
if e.zw == nil || e.zwLevel != level {
zw, err := zlib.NewWriterLevel(w, level)
if err != nil {
return err
}
e.zw = zw
e.zwLevel = level
} else {
e.zw.Reset(w)
}
defer e.zw.Close()
bitsPerPixel := 0
switch cb {
case cbG8:
bitsPerPixel = 8
case cbTC8:
bitsPerPixel = 24
case cbP8:
bitsPerPixel = 8
case cbP4:
bitsPerPixel = 4
case cbP2:
bitsPerPixel = 2
case cbP1:
bitsPerPixel = 1
case cbTCA8:
bitsPerPixel = 32
case cbTC16:
bitsPerPixel = 48
case cbTCA16:
bitsPerPixel = 64
case cbG16:
bitsPerPixel = 16
}
// cr[*] and pr are the bytes for the current and previous row.
// cr[0] is unfiltered (or equivalently, filtered with the ftNone filter).
// cr[ft], for non-zero filter types ft, are buffers for transforming cr[0] under the
// other PNG filter types. These buffers are allocated once and re-used for each row.
// The +1 is for the per-row filter type, which is at cr[*][0].
b := m.Bounds()
sz := 1 + (bitsPerPixel*b.Dx()+7)/8
for i := range e.cr {
if cap(e.cr[i]) < sz {
e.cr[i] = make([]uint8, sz)
} else {
e.cr[i] = e.cr[i][:sz]
}
e.cr[i][0] = uint8(i)
}
cr := e.cr
if cap(e.pr) < sz {
e.pr = make([]uint8, sz)
} else {
e.pr = e.pr[:sz]
zeroMemory(e.pr)
}
pr := e.pr
gray, _ := m.(*image.Gray)
rgba, _ := m.(*image.RGBA)
paletted, _ := m.(*image.Paletted)
nrgba, _ := m.(*image.NRGBA)
for y := b.Min.Y; y < b.Max.Y; y++ {
// Convert from colors to bytes.
i := 1
switch cb {
case cbG8:
if gray != nil {
offset := (y - b.Min.Y) * gray.Stride
copy(cr[0][1:], gray.Pix[offset:offset+b.Dx()])
} else {
for x := b.Min.X; x < b.Max.X; x++ {
c := color.GrayModel.Convert(m.At(x, y)).(color.Gray)
cr[0][i] = c.Y
i++
}
}
case cbTC8:
// We have previously verified that the alpha value is fully opaque.
cr0 := cr[0]
stride, pix := 0, []byte(nil)
if rgba != nil {
stride, pix = rgba.Stride, rgba.Pix
} else if nrgba != nil {
stride, pix = nrgba.Stride, nrgba.Pix
}
if stride != 0 {
j0 := (y - b.Min.Y) * stride
j1 := j0 + b.Dx()*4
for j := j0; j < j1; j += 4 {
cr0[i+0] = pix[j+0]
cr0[i+1] = pix[j+1]
cr0[i+2] = pix[j+2]
i += 3
}
} else {
for x := b.Min.X; x < b.Max.X; x++ {
r, g, b, _ := m.At(x, y).RGBA()
cr0[i+0] = uint8(r >> 8)
cr0[i+1] = uint8(g >> 8)
cr0[i+2] = uint8(b >> 8)
i += 3
}
}
case cbP8:
if paletted != nil {
offset := (y - b.Min.Y) * paletted.Stride
copy(cr[0][1:], paletted.Pix[offset:offset+b.Dx()])
} else {
pi := m.(image.PalettedImage)
for x := b.Min.X; x < b.Max.X; x++ {
cr[0][i] = pi.ColorIndexAt(x, y)
i += 1
}
}
case cbP4, cbP2, cbP1:
pi := m.(image.PalettedImage)
var a uint8
var c int
for x := b.Min.X; x < b.Max.X; x++ {
a = a<<uint(bitsPerPixel) | pi.ColorIndexAt(x, y)
c++
if c == 8/bitsPerPixel {
cr[0][i] = a
i += 1
a = 0
c = 0
}
}
if c != 0 {
for c != 8/bitsPerPixel {
a = a << uint(bitsPerPixel)
c++
}
cr[0][i] = a
}
case cbTCA8:
if nrgba != nil {
offset := (y - b.Min.Y) * nrgba.Stride
copy(cr[0][1:], nrgba.Pix[offset:offset+b.Dx()*4])
} else {
// Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied.
for x := b.Min.X; x < b.Max.X; x++ {
c := color.NRGBAModel.Convert(m.At(x, y)).(color.NRGBA)
cr[0][i+0] = c.R
cr[0][i+1] = c.G
cr[0][i+2] = c.B
cr[0][i+3] = c.A
i += 4
}
}
case cbG16:
for x := b.Min.X; x < b.Max.X; x++ {
c := color.Gray16Model.Convert(m.At(x, y)).(color.Gray16)
cr[0][i+0] = uint8(c.Y >> 8)
cr[0][i+1] = uint8(c.Y)
i += 2
}
case cbTC16:
// We have previously verified that the alpha value is fully opaque.
for x := b.Min.X; x < b.Max.X; x++ {
r, g, b, _ := m.At(x, y).RGBA()
cr[0][i+0] = uint8(r >> 8)
cr[0][i+1] = uint8(r)
cr[0][i+2] = uint8(g >> 8)
cr[0][i+3] = uint8(g)
cr[0][i+4] = uint8(b >> 8)
cr[0][i+5] = uint8(b)
i += 6
}
case cbTCA16:
// Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied.
for x := b.Min.X; x < b.Max.X; x++ {
c := color.NRGBA64Model.Convert(m.At(x, y)).(color.NRGBA64)
cr[0][i+0] = uint8(c.R >> 8)
cr[0][i+1] = uint8(c.R)
cr[0][i+2] = uint8(c.G >> 8)
cr[0][i+3] = uint8(c.G)
cr[0][i+4] = uint8(c.B >> 8)
cr[0][i+5] = uint8(c.B)
cr[0][i+6] = uint8(c.A >> 8)
cr[0][i+7] = uint8(c.A)
i += 8
}
}
// Apply the filter.
// Skip filter for NoCompression and paletted images (cbP8) as
// "filters are rarely useful on palette images" and will result
// in larger files (see http://www.libpng.org/pub/png/book/chapter09.html).
f := ftNone
if level != zlib.NoCompression && cb != cbP8 && cb != cbP4 && cb != cbP2 && cb != cbP1 {
// Since we skip paletted images we don't have to worry about
// bitsPerPixel not being a multiple of 8
bpp := bitsPerPixel / 8
f = filter(&cr, pr, bpp)
}
// Write the compressed bytes.
if _, err := e.zw.Write(cr[f]); err != nil {
return err
}
// The current row for y is the previous row for y+1.
pr, cr[0] = cr[0], pr
}
return nil
}
// Write the actual image data to one or more IDAT chunks.
func (e *encoder) writeIDATs() {
e.write_type = 0
if e.err != nil {
return
}
if e.bw == nil {
e.bw = bufio.NewWriterSize(e, 1<<15)
} else {
e.bw.Reset(e)
}
e.err = e.writeImage(e.bw, e.a.Frames[0].Image, e.cb, levelToZlib(e.enc.CompressionLevel))
if e.err != nil {
return
}
e.err = e.bw.Flush()
}
// This function is required because we want the zero value of
// Encoder.CompressionLevel to map to zlib.DefaultCompression.
func levelToZlib(l CompressionLevel) int {
switch l {
case DefaultCompression:
return zlib.DefaultCompression
case NoCompression:
return zlib.NoCompression
case BestSpeed:
return zlib.BestSpeed
case BestCompression:
return zlib.BestCompression
default:
return zlib.DefaultCompression
}
}
func (e *encoder) writeIEND() { e.writeChunk(nil, "IEND") }
// Encode writes the APNG a to w in PNG format. Any Image may be
// encoded, but images that are not image.NRGBA might be encoded lossily.
func Encode(w io.Writer, a APNG) error {
var e Encoder
return e.Encode(w, a)
}
// Encode writes the Animation a to w in PNG format.
func (enc *Encoder) Encode(w io.Writer, a APNG) error {
// Obviously, negative widths and heights are invalid. Furthermore, the PNG
// spec section 11.2.2 says that zero is invalid. Excessively large images are
// also rejected.
mw, mh := int64(a.Frames[0].Image.Bounds().Dx()), int64(a.Frames[0].Image.Bounds().Dy())
if mw <= 0 || mh <= 0 || mw >= 1<<32 || mh >= 1<<32 {
return FormatError("invalid image size: " + strconv.FormatInt(mw, 10) + "x" + strconv.FormatInt(mh, 10))
}
var e *encoder
if enc.BufferPool != nil {
buffer := enc.BufferPool.Get()
e = (*encoder)(buffer)
}
if e == nil {
e = &encoder{}
}
if enc.BufferPool != nil {
defer enc.BufferPool.Put((*EncoderBuffer)(e))
}
e.enc = enc
e.w = w
e.a = a
var pal color.Palette
// cbP8 encoding needs PalettedImage's ColorIndexAt method.
if _, ok := a.Frames[0].Image.(image.PalettedImage); ok {
pal, _ = a.Frames[0].Image.ColorModel().(color.Palette)
}
if pal != nil {
if len(pal) <= 2 {
e.cb = cbP1
} else if len(pal) <= 4 {
e.cb = cbP2
} else if len(pal) <= 16 {
e.cb = cbP4
} else {
e.cb = cbP8
}
} else {
switch a.Frames[0].Image.ColorModel() {
case color.GrayModel:
e.cb = cbG8
case color.Gray16Model:
e.cb = cbG16
case color.RGBAModel, color.NRGBAModel, color.AlphaModel:
isOpaque := true
for _, v := range a.Frames {
if !opaque(v.Image) {
isOpaque = false
break
}
}
if isOpaque {
e.cb = cbTC8
} else {
e.cb = cbTCA8
}
default:
isOpaque := true
for _, v := range a.Frames {
if !opaque(v.Image) {
isOpaque = false
break
}
}
if isOpaque {
e.cb = cbTC16
} else {
e.cb = cbTCA16
}
}
}
_, e.err = io.WriteString(w, pngHeader)
e.writeIHDR()
if pal != nil {
e.writePLTEAndTRNS(pal)
}
if len(e.a.Frames) > 1 {
e.writeacTL()
}
if !e.a.Frames[0].IsDefault {
e.writefcTL(e.a.Frames[0])
}
e.writeIDATs()
for i := 0; i < len(e.a.Frames); i = i + 1 {
if i != 0 && !e.a.Frames[i].IsDefault {
e.writefcTL(e.a.Frames[i])
e.writefdATs(e.a.Frames[i])
}
}
e.writeIEND()
return e.err
}