2
0
mirror of https://github.com/42wim/matterbridge synced 2024-11-15 06:12:55 +00:00
matterbridge/vendor/github.com/Benau/go_rlottie/vector_vdrawhelper.cpp
Benau 53cafa9f3d
Convert .tgs with go libraries (and cgo) (telegram) (#1569)
This commit adds support for go/cgo tgs conversion when building with the -tags `cgo`
The default binaries are still "pure" go and uses the old way of converting.

* Move lottie_convert.py conversion code to its own file

* Add optional libtgsconverter

* Update vendor

* Apply suggestions from code review

* Update bridge/helper/libtgsconverter.go

Co-authored-by: Wim <wim@42.be>
2021-08-24 22:32:50 +02:00

768 lines
24 KiB
C++

#include "config.h"
/*
* Copyright (c) 2020 Samsung Electronics Co., Ltd. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "vector_vdrawhelper.h"
#include <algorithm>
#include <climits>
#include <cstring>
#include <mutex>
#include <unordered_map>
#include <array>
static RenderFuncTable RenderTable;
void VTextureData::setClip(const VRect &clip)
{
left = clip.left();
top = clip.top();
right = std::min(clip.right(), int(width())) - 1;
bottom = std::min(clip.bottom(), int(height())) - 1;
}
class VGradientCache {
public:
struct CacheInfo : public VColorTable {
inline CacheInfo(VGradientStops s) : stops(std::move(s)) {}
VGradientStops stops;
};
using VCacheData = std::shared_ptr<const CacheInfo>;
using VCacheKey = int64_t;
using VGradientColorTableHash =
std::unordered_multimap<VCacheKey, VCacheData>;
bool generateGradientColorTable(const VGradientStops &stops, float alpha,
uint32_t *colorTable, int size);
VCacheData getBuffer(const VGradient &gradient)
{
VCacheKey hash_val = 0;
VCacheData info;
const VGradientStops &stops = gradient.mStops;
for (uint i = 0; i < stops.size() && i <= 2; i++)
hash_val +=
VCacheKey(stops[i].second.premulARGB() * gradient.alpha());
{
std::lock_guard<std::mutex> guard(mMutex);
size_t count = mCache.count(hash_val);
if (!count) {
// key is not present in the hash
info = addCacheElement(hash_val, gradient);
} else if (count == 1) {
auto search = mCache.find(hash_val);
if (search->second->stops == stops) {
info = search->second;
} else {
// didn't find an exact match
info = addCacheElement(hash_val, gradient);
}
} else {
// we have a multiple data with same key
auto range = mCache.equal_range(hash_val);
for (auto it = range.first; it != range.second; ++it) {
if (it->second->stops == stops) {
info = it->second;
break;
}
}
if (!info) {
// didn't find an exact match
info = addCacheElement(hash_val, gradient);
}
}
}
return info;
}
static VGradientCache &instance()
{
static VGradientCache CACHE;
return CACHE;
}
protected:
uint maxCacheSize() const { return 60; }
VCacheData addCacheElement(VCacheKey hash_val, const VGradient &gradient)
{
if (mCache.size() == maxCacheSize()) {
uint count = maxCacheSize() / 10;
while (count--) {
mCache.erase(mCache.begin());
}
}
auto cache_entry = std::make_shared<CacheInfo>(gradient.mStops);
cache_entry->alpha = generateGradientColorTable(
gradient.mStops, gradient.alpha(), cache_entry->buffer32,
VGradient::colorTableSize);
mCache.insert(std::make_pair(hash_val, cache_entry));
return cache_entry;
}
private:
VGradientCache() = default;
VGradientColorTableHash mCache;
std::mutex mMutex;
};
bool VGradientCache::generateGradientColorTable(const VGradientStops &stops,
float opacity,
uint32_t *colorTable, int size)
{
int dist, idist, pos = 0;
size_t i;
bool alpha = false;
size_t stopCount = stops.size();
const VGradientStop *curr, *next, *start;
uint32_t curColor, nextColor;
float delta, t, incr, fpos;
if (!vCompare(opacity, 1.0f)) alpha = true;
start = stops.data();
curr = start;
if (!curr->second.isOpaque()) alpha = true;
curColor = curr->second.premulARGB(opacity);
incr = 1.0f / (float)size;
fpos = 1.5f * incr;
colorTable[pos++] = curColor;
while (fpos <= curr->first) {
colorTable[pos] = colorTable[pos - 1];
pos++;
fpos += incr;
}
for (i = 0; i < stopCount - 1; ++i) {
curr = (start + i);
next = (start + i + 1);
delta = 1 / (next->first - curr->first);
if (!next->second.isOpaque()) alpha = true;
nextColor = next->second.premulARGB(opacity);
while (fpos < next->first && pos < size) {
t = (fpos - curr->first) * delta;
dist = (int)(255 * t);
idist = 255 - dist;
colorTable[pos] =
interpolate_pixel(curColor, idist, nextColor, dist);
++pos;
fpos += incr;
}
curColor = nextColor;
}
for (; pos < size; ++pos) colorTable[pos] = curColor;
// Make sure the last color stop is represented at the end of the table
colorTable[size - 1] = curColor;
return alpha;
}
void VRasterBuffer::clear()
{
memset(mBuffer, 0, mHeight * mBytesPerLine);
}
VBitmap::Format VRasterBuffer::prepare(const VBitmap *image)
{
mBuffer = image->data();
mWidth = image->width();
mHeight = image->height();
mBytesPerPixel = 4;
mBytesPerLine = image->stride();
mFormat = image->format();
return mFormat;
}
void VSpanData::init(VRasterBuffer *image)
{
mRasterBuffer = image;
setDrawRegion(VRect(0, 0, int(image->width()), int(image->height())));
mType = VSpanData::Type::None;
mBlendFunc = nullptr;
mUnclippedBlendFunc = nullptr;
}
/*
* Gradient Draw routines
*
*/
#define FIXPT_BITS 8
#define FIXPT_SIZE (1 << FIXPT_BITS)
static inline void getLinearGradientValues(LinearGradientValues *v,
const VSpanData * data)
{
const VGradientData *grad = &data->mGradient;
v->dx = grad->linear.x2 - grad->linear.x1;
v->dy = grad->linear.y2 - grad->linear.y1;
v->l = v->dx * v->dx + v->dy * v->dy;
v->off = 0;
if (v->l != 0) {
v->dx /= v->l;
v->dy /= v->l;
v->off = -v->dx * grad->linear.x1 - v->dy * grad->linear.y1;
}
}
static inline void getRadialGradientValues(RadialGradientValues *v,
const VSpanData * data)
{
const VGradientData &gradient = data->mGradient;
v->dx = gradient.radial.cx - gradient.radial.fx;
v->dy = gradient.radial.cy - gradient.radial.fy;
v->dr = gradient.radial.cradius - gradient.radial.fradius;
v->sqrfr = gradient.radial.fradius * gradient.radial.fradius;
v->a = v->dr * v->dr - v->dx * v->dx - v->dy * v->dy;
v->inv2a = 1 / (2 * v->a);
v->extended = !vIsZero(gradient.radial.fradius) || v->a <= 0;
}
static inline int gradientClamp(const VGradientData *grad, int ipos)
{
int limit;
if (grad->mSpread == VGradient::Spread::Repeat) {
ipos = ipos % VGradient::colorTableSize;
ipos = ipos < 0 ? VGradient::colorTableSize + ipos : ipos;
} else if (grad->mSpread == VGradient::Spread::Reflect) {
limit = VGradient::colorTableSize * 2;
ipos = ipos % limit;
ipos = ipos < 0 ? limit + ipos : ipos;
ipos = ipos >= VGradient::colorTableSize ? limit - 1 - ipos : ipos;
} else {
if (ipos < 0)
ipos = 0;
else if (ipos >= VGradient::colorTableSize)
ipos = VGradient::colorTableSize - 1;
}
return ipos;
}
static uint32_t gradientPixelFixed(const VGradientData *grad, int fixed_pos)
{
int ipos = (fixed_pos + (FIXPT_SIZE / 2)) >> FIXPT_BITS;
return grad->mColorTable[gradientClamp(grad, ipos)];
}
static inline uint32_t gradientPixel(const VGradientData *grad, float pos)
{
int ipos = (int)(pos * (VGradient::colorTableSize - 1) + (float)(0.5));
return grad->mColorTable[gradientClamp(grad, ipos)];
}
void fetch_linear_gradient(uint32_t *buffer, const Operator *op,
const VSpanData *data, int y, int x, int length)
{
float t, inc;
const VGradientData *gradient = &data->mGradient;
bool affine = true;
float rx = 0, ry = 0;
if (op->linear.l == 0) {
t = inc = 0;
} else {
rx = data->m21 * (y + float(0.5)) + data->m11 * (x + float(0.5)) +
data->dx;
ry = data->m22 * (y + float(0.5)) + data->m12 * (x + float(0.5)) +
data->dy;
t = op->linear.dx * rx + op->linear.dy * ry + op->linear.off;
inc = op->linear.dx * data->m11 + op->linear.dy * data->m12;
affine = !data->m13 && !data->m23;
if (affine) {
t *= (VGradient::colorTableSize - 1);
inc *= (VGradient::colorTableSize - 1);
}
}
const uint32_t *end = buffer + length;
if (affine) {
if (inc > float(-1e-5) && inc < float(1e-5)) {
memfill32(buffer, gradientPixelFixed(gradient, int(t * FIXPT_SIZE)),
length);
} else {
if (t + inc * length < float(INT_MAX >> (FIXPT_BITS + 1)) &&
t + inc * length > float(INT_MIN >> (FIXPT_BITS + 1))) {
// we can use fixed point math
int t_fixed = int(t * FIXPT_SIZE);
int inc_fixed = int(inc * FIXPT_SIZE);
while (buffer < end) {
*buffer = gradientPixelFixed(gradient, t_fixed);
t_fixed += inc_fixed;
++buffer;
}
} else {
// we have to fall back to float math
while (buffer < end) {
*buffer =
gradientPixel(gradient, t / VGradient::colorTableSize);
t += inc;
++buffer;
}
}
}
} else { // fall back to float math here as well
float rw = data->m23 * (y + float(0.5)) + data->m13 * (x + float(0.5)) +
data->m33;
while (buffer < end) {
float xt = rx / rw;
float yt = ry / rw;
t = (op->linear.dx * xt + op->linear.dy * yt) + op->linear.off;
*buffer = gradientPixel(gradient, t);
rx += data->m11;
ry += data->m12;
rw += data->m13;
if (!rw) {
rw += data->m13;
}
++buffer;
}
}
}
static inline float radialDeterminant(float a, float b, float c)
{
return (b * b) - (4 * a * c);
}
static void fetch(uint32_t *buffer, uint32_t *end, const Operator *op,
const VSpanData *data, float det, float delta_det,
float delta_delta_det, float b, float delta_b)
{
if (op->radial.extended) {
while (buffer < end) {
uint32_t result = 0;
if (det >= 0) {
float w = std::sqrt(det) - b;
if (data->mGradient.radial.fradius + op->radial.dr * w >= 0)
result = gradientPixel(&data->mGradient, w);
}
*buffer = result;
det += delta_det;
delta_det += delta_delta_det;
b += delta_b;
++buffer;
}
} else {
while (buffer < end) {
*buffer++ = gradientPixel(&data->mGradient, std::sqrt(det) - b);
det += delta_det;
delta_det += delta_delta_det;
b += delta_b;
}
}
}
void fetch_radial_gradient(uint32_t *buffer, const Operator *op,
const VSpanData *data, int y, int x, int length)
{
// avoid division by zero
if (vIsZero(op->radial.a)) {
memfill32(buffer, 0, length);
return;
}
float rx =
data->m21 * (y + float(0.5)) + data->dx + data->m11 * (x + float(0.5));
float ry =
data->m22 * (y + float(0.5)) + data->dy + data->m12 * (x + float(0.5));
bool affine = !data->m13 && !data->m23;
uint32_t *end = buffer + length;
if (affine) {
rx -= data->mGradient.radial.fx;
ry -= data->mGradient.radial.fy;
float inv_a = 1 / float(2 * op->radial.a);
const float delta_rx = data->m11;
const float delta_ry = data->m12;
float b = 2 * (op->radial.dr * data->mGradient.radial.fradius +
rx * op->radial.dx + ry * op->radial.dy);
float delta_b =
2 * (delta_rx * op->radial.dx + delta_ry * op->radial.dy);
const float b_delta_b = 2 * b * delta_b;
const float delta_b_delta_b = 2 * delta_b * delta_b;
const float bb = b * b;
const float delta_bb = delta_b * delta_b;
b *= inv_a;
delta_b *= inv_a;
const float rxrxryry = rx * rx + ry * ry;
const float delta_rxrxryry = delta_rx * delta_rx + delta_ry * delta_ry;
const float rx_plus_ry = 2 * (rx * delta_rx + ry * delta_ry);
const float delta_rx_plus_ry = 2 * delta_rxrxryry;
inv_a *= inv_a;
float det =
(bb - 4 * op->radial.a * (op->radial.sqrfr - rxrxryry)) * inv_a;
float delta_det = (b_delta_b + delta_bb +
4 * op->radial.a * (rx_plus_ry + delta_rxrxryry)) *
inv_a;
const float delta_delta_det =
(delta_b_delta_b + 4 * op->radial.a * delta_rx_plus_ry) * inv_a;
fetch(buffer, end, op, data, det, delta_det, delta_delta_det, b,
delta_b);
} else {
float rw = data->m23 * (y + float(0.5)) + data->m33 +
data->m13 * (x + float(0.5));
while (buffer < end) {
if (rw == 0) {
*buffer = 0;
} else {
float invRw = 1 / rw;
float gx = rx * invRw - data->mGradient.radial.fx;
float gy = ry * invRw - data->mGradient.radial.fy;
float b = 2 * (op->radial.dr * data->mGradient.radial.fradius +
gx * op->radial.dx + gy * op->radial.dy);
float det = radialDeterminant(
op->radial.a, b, op->radial.sqrfr - (gx * gx + gy * gy));
uint32_t result = 0;
if (det >= 0) {
float detSqrt = std::sqrt(det);
float s0 = (-b - detSqrt) * op->radial.inv2a;
float s1 = (-b + detSqrt) * op->radial.inv2a;
float s = vMax(s0, s1);
if (data->mGradient.radial.fradius + op->radial.dr * s >= 0)
result = gradientPixel(&data->mGradient, s);
}
*buffer = result;
}
rx += data->m11;
ry += data->m12;
rw += data->m13;
++buffer;
}
}
}
static inline Operator getOperator(const VSpanData *data)
{
Operator op;
bool solidSource = false;
switch (data->mType) {
case VSpanData::Type::Solid:
solidSource = (vAlpha(data->mSolid) == 255);
op.srcFetch = nullptr;
break;
case VSpanData::Type::LinearGradient:
solidSource = false;
getLinearGradientValues(&op.linear, data);
op.srcFetch = &fetch_linear_gradient;
break;
case VSpanData::Type::RadialGradient:
solidSource = false;
getRadialGradientValues(&op.radial, data);
op.srcFetch = &fetch_radial_gradient;
break;
default:
op.srcFetch = nullptr;
break;
}
op.mode = data->mBlendMode;
if (op.mode == BlendMode::SrcOver && solidSource) op.mode = BlendMode::Src;
op.funcSolid = RenderTable.color(op.mode);
op.func = RenderTable.src(op.mode);
return op;
}
static void blend_color(size_t size, const VRle::Span *array, void *userData)
{
VSpanData *data = (VSpanData *)(userData);
Operator op = getOperator(data);
const uint color = data->mSolid;
for (size_t i = 0 ; i < size; ++i) {
const auto &span = array[i];
op.funcSolid(data->buffer(span.x, span.y), span.len, color, span.coverage);
}
}
// Signature of Process Object
// void Pocess(uint* scratchBuffer, size_t x, size_t y, uchar cov)
template <class Process>
static inline void process_in_chunk(const VRle::Span *array, size_t size,
Process process)
{
std::array<uint, 2048> buf;
for (size_t i = 0; i < size; i++) {
const auto &span = array[i];
size_t len = span.len;
auto x = span.x;
while (len) {
auto l = std::min(len, buf.size());
process(buf.data(), x, span.y, l, span.coverage);
x += l;
len -= l;
}
}
}
static void blend_gradient(size_t size, const VRle::Span *array,
void *userData)
{
VSpanData *data = (VSpanData *)(userData);
Operator op = getOperator(data);
if (!op.srcFetch) return;
process_in_chunk(
array, size,
[&](uint *scratch, size_t x, size_t y, size_t len, uchar cov) {
op.srcFetch(scratch, &op, data, (int)y, (int)x, (int)len);
op.func(data->buffer((int)x, (int)y), (int)len, scratch, cov);
});
}
template <class T>
constexpr const T &clamp(const T &v, const T &lo, const T &hi)
{
return v < lo ? lo : hi < v ? hi : v;
}
static constexpr inline uchar alpha_mul(uchar a, uchar b)
{
return ((a * b) >> 8);
}
static void blend_image_xform(size_t size, const VRle::Span *array,
void *userData)
{
const auto data = reinterpret_cast<const VSpanData *>(userData);
const auto &src = data->texture();
if (src.format() != VBitmap::Format::ARGB32_Premultiplied &&
src.format() != VBitmap::Format::ARGB32) {
//@TODO other formats not yet handled.
return;
}
Operator op = getOperator(data);
process_in_chunk(
array, size,
[&](uint *scratch, size_t x, size_t y, size_t len, uchar cov) {
const auto coverage = (cov * src.alpha()) >> 8;
const float xfactor = y * data->m21 + data->dx + data->m11;
const float yfactor = y * data->m22 + data->dy + data->m12;
for (size_t i = 0; i < len; i++) {
const float fx = (x + i) * data->m11 + xfactor;
const float fy = (x + i) * data->m12 + yfactor;
const int px = clamp(int(fx), src.left, src.right);
const int py = clamp(int(fy), src.top, src.bottom);
scratch[i] = src.pixel(px, py);
}
op.func(data->buffer((int)x, (int)y), (int)len, scratch, coverage);
});
}
static void blend_image(size_t size, const VRle::Span *array, void *userData)
{
const auto data = reinterpret_cast<const VSpanData *>(userData);
const auto &src = data->texture();
if (src.format() != VBitmap::Format::ARGB32_Premultiplied &&
src.format() != VBitmap::Format::ARGB32) {
//@TODO other formats not yet handled.
return;
}
Operator op = getOperator(data);
for (size_t i = 0; i < size; i++) {
const auto &span = array[i];
int x = span.x;
int length = span.len;
int sx = x + int(data->dx);
int sy = span.y + int(data->dy);
// notyhing to copy.
if (sy < 0 || sy >= int(src.height()) || sx >= int(src.width()) ||
(sx + length) <= 0)
continue;
// intersecting left edge of image
if (sx < 0) {
x -= sx;
length += sx;
sx = 0;
}
// intersecting right edge of image
if (sx + length > int(src.width())) length = (int)src.width() - sx;
op.func(data->buffer(x, span.y), length, src.pixelRef(sx, sy),
alpha_mul(span.coverage, src.alpha()));
}
}
void VSpanData::setup(const VBrush &brush, BlendMode /*mode*/, int /*alpha*/)
{
transformType = VMatrix::MatrixType::None;
switch (brush.type()) {
case VBrush::Type::NoBrush:
mType = VSpanData::Type::None;
break;
case VBrush::Type::Solid:
mType = VSpanData::Type::Solid;
mSolid = brush.mColor.premulARGB();
break;
case VBrush::Type::LinearGradient: {
mType = VSpanData::Type::LinearGradient;
mColorTable = VGradientCache::instance().getBuffer(*brush.mGradient);
mGradient.mColorTable = mColorTable->buffer32;
mGradient.mColorTableAlpha = mColorTable->alpha;
mGradient.linear.x1 = brush.mGradient->linear.x1;
mGradient.linear.y1 = brush.mGradient->linear.y1;
mGradient.linear.x2 = brush.mGradient->linear.x2;
mGradient.linear.y2 = brush.mGradient->linear.y2;
mGradient.mSpread = brush.mGradient->mSpread;
setupMatrix(brush.mGradient->mMatrix);
break;
}
case VBrush::Type::RadialGradient: {
mType = VSpanData::Type::RadialGradient;
mColorTable = VGradientCache::instance().getBuffer(*brush.mGradient);
mGradient.mColorTable = mColorTable->buffer32;
mGradient.mColorTableAlpha = mColorTable->alpha;
mGradient.radial.cx = brush.mGradient->radial.cx;
mGradient.radial.cy = brush.mGradient->radial.cy;
mGradient.radial.fx = brush.mGradient->radial.fx;
mGradient.radial.fy = brush.mGradient->radial.fy;
mGradient.radial.cradius = brush.mGradient->radial.cradius;
mGradient.radial.fradius = brush.mGradient->radial.fradius;
mGradient.mSpread = brush.mGradient->mSpread;
setupMatrix(brush.mGradient->mMatrix);
break;
}
case VBrush::Type::Texture: {
mType = VSpanData::Type::Texture;
initTexture(&brush.mTexture->mBitmap, brush.mTexture->mAlpha,
brush.mTexture->mBitmap.rect());
setupMatrix(brush.mTexture->mMatrix);
break;
}
default:
break;
}
updateSpanFunc();
}
void VSpanData::setupMatrix(const VMatrix &matrix)
{
VMatrix inv = matrix.inverted();
m11 = inv.m11;
m12 = inv.m12;
m13 = inv.m13;
m21 = inv.m21;
m22 = inv.m22;
m23 = inv.m23;
m33 = inv.m33;
dx = inv.mtx;
dy = inv.mty;
transformType = inv.type();
const bool affine = inv.isAffine();
const float f1 = m11 * m11 + m21 * m21;
const float f2 = m12 * m12 + m22 * m22;
fast_matrix = affine && f1 < 1e4 && f2 < 1e4 && f1 > (1.0 / 65536) &&
f2 > (1.0 / 65536) && fabs(dx) < 1e4 && fabs(dy) < 1e4;
}
void VSpanData::initTexture(const VBitmap *bitmap, int alpha,
const VRect &sourceRect)
{
mType = VSpanData::Type::Texture;
mTexture.prepare(bitmap);
mTexture.setClip(sourceRect);
mTexture.setAlpha(alpha);
updateSpanFunc();
}
void VSpanData::updateSpanFunc()
{
switch (mType) {
case VSpanData::Type::None:
mUnclippedBlendFunc = nullptr;
break;
case VSpanData::Type::Solid:
mUnclippedBlendFunc = &blend_color;
break;
case VSpanData::Type::LinearGradient:
case VSpanData::Type::RadialGradient: {
mUnclippedBlendFunc = &blend_gradient;
break;
}
case VSpanData::Type::Texture: {
//@TODO update proper image function.
if (transformType <= VMatrix::MatrixType::Translate) {
mUnclippedBlendFunc = &blend_image;
} else {
mUnclippedBlendFunc = &blend_image_xform;
}
break;
}
}
}
#if !defined(__SSE2__) && !defined(USE_ARM_NEON)
void memfill32(uint32_t *dest, uint32_t value, int length)
{
// let compiler do the auto vectorization.
for (int i = 0 ; i < length; i++) {
*dest++ = value;
}
}
#endif