manifest/tests/test_client.py

190 lines
5.6 KiB
Python

"""
Test client.
We just test the dummy client.
"""
from manifest.clients.dummy import DummyClient
def test_init() -> None:
"""Test client initialization."""
client = DummyClient(connection_str=None)
assert client.n == 1 # type: ignore
args = {"n": 3}
client = DummyClient(connection_str=None, client_args=args)
assert client.n == 3 # type: ignore
def test_get_params() -> None:
"""Test get param functions."""
client = DummyClient(connection_str=None)
assert client.get_model_params() == {
"engine": "dummy",
"model": "text-davinci-003",
}
assert client.get_model_inputs() == [
"engine",
"temperature",
"max_tokens",
"n",
"top_p",
"top_k",
"batch_size",
]
def test_get_request() -> None:
"""Test client get request."""
args = {"n": 3}
client = DummyClient(connection_str=None, client_args=args)
request_params = client.get_request("hello", {})
response = client.run_request(request_params)
assert client.get_cache_key(request_params) == {
"prompt": "hello",
"model": "text-davinci-003",
"n": 3,
"temperature": 0.0,
"max_tokens": 10,
"top_p": 1.0,
"best_of": 1,
"engine": "dummy",
"request_cls": "LMRequest",
}
assert response.get_json_response() == {
"choices": [
{
"text": " probsuib.FirstName>- commodityting segunda inserted signals Religious", # noqa: E501
"token_logprobs": [
-0.2649905035732101,
-1.210794839387105,
-1.2173929801003434,
-0.7758233850171001,
-0.7165940659570416,
-1.7430328887209088,
-1.5379414228820203,
-1.7838011423472508,
-1.139095076944217,
-0.6321855879833425,
],
"tokens": [
"70470",
"80723",
"52693",
"39743",
"38983",
"1303",
"56072",
"22306",
"17738",
"53176",
],
}
]
* 3
}
assert response.get_usage_obj().dict() == {
"usages": [{"prompt_tokens": 1, "completion_tokens": 10, "total_tokens": 11}]
* 3,
}
request_params = client.get_request("hello", {"n": 5})
response = client.run_request(request_params)
assert client.get_cache_key(request_params) == {
"prompt": "hello",
"model": "text-davinci-003",
"n": 5,
"temperature": 0.0,
"max_tokens": 10,
"top_p": 1.0,
"best_of": 1,
"engine": "dummy",
"request_cls": "LMRequest",
}
assert response.get_json_response() == {
"choices": [
{
"text": " probsuib.FirstName>- commodityting segunda inserted signals Religious", # noqa: E501
"token_logprobs": [
-0.2649905035732101,
-1.210794839387105,
-1.2173929801003434,
-0.7758233850171001,
-0.7165940659570416,
-1.7430328887209088,
-1.5379414228820203,
-1.7838011423472508,
-1.139095076944217,
-0.6321855879833425,
],
"tokens": [
"70470",
"80723",
"52693",
"39743",
"38983",
"1303",
"56072",
"22306",
"17738",
"53176",
],
}
]
* 5
}
assert response.get_usage_obj().dict() == {
"usages": [{"prompt_tokens": 1, "completion_tokens": 10, "total_tokens": 11}]
* 5,
}
request_params = client.get_request(["hello"] * 5, {"n": 1})
response = client.run_request(request_params)
assert client.get_cache_key(request_params) == {
"prompt": ["hello"] * 5,
"model": "text-davinci-003",
"n": 1,
"temperature": 0.0,
"max_tokens": 10,
"top_p": 1.0,
"best_of": 1,
"engine": "dummy",
"request_cls": "LMRequest",
}
assert response.get_json_response() == {
"choices": [
{
"text": " probsuib.FirstName>- commodityting segunda inserted signals Religious", # noqa: E501
"token_logprobs": [
-0.2649905035732101,
-1.210794839387105,
-1.2173929801003434,
-0.7758233850171001,
-0.7165940659570416,
-1.7430328887209088,
-1.5379414228820203,
-1.7838011423472508,
-1.139095076944217,
-0.6321855879833425,
],
"tokens": [
"70470",
"80723",
"52693",
"39743",
"38983",
"1303",
"56072",
"22306",
"17738",
"53176",
],
}
]
* 5
}
assert response.get_usage_obj().dict() == {
"usages": [{"prompt_tokens": 1, "completion_tokens": 10, "total_tokens": 11}]
* 5,
}