mirror of
https://github.com/HazyResearch/manifest
synced 2024-10-31 15:20:26 +00:00
281 lines
8.9 KiB
Python
281 lines
8.9 KiB
Python
"""Test the HuggingFace API."""
|
|
|
|
import math
|
|
import os
|
|
from subprocess import PIPE, Popen
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from manifest.api.models.huggingface import MODEL_REGISTRY, TextGenerationModel
|
|
from manifest.api.models.sentence_transformer import SentenceTransformerModel
|
|
|
|
NOCUDA = 0
|
|
try:
|
|
p = Popen(
|
|
[
|
|
"nvidia-smi",
|
|
(
|
|
"--query-gpu=index,utilization.gpu,memory.total,memory.used,"
|
|
"memory.free,driver_version,name,gpu_serial,display_active,"
|
|
"display_mode"
|
|
),
|
|
"--format=csv,noheader,nounits",
|
|
],
|
|
stdout=PIPE,
|
|
)
|
|
except OSError:
|
|
NOCUDA = 1
|
|
|
|
MAXGPU = 0
|
|
if NOCUDA == 0:
|
|
try:
|
|
p = os.popen( # type: ignore
|
|
"nvidia-smi --query-gpu=index --format=csv,noheader,nounits"
|
|
)
|
|
i = p.read().split("\n") # type: ignore
|
|
MAXGPU = int(i[-2]) + 1
|
|
except OSError:
|
|
NOCUDA = 1
|
|
|
|
|
|
def test_load_non_registry_model() -> None:
|
|
"""Test load model not in registry."""
|
|
model_name = "NinedayWang/PolyCoder-160M"
|
|
assert model_name not in MODEL_REGISTRY
|
|
model = TextGenerationModel(
|
|
model_name_or_path=model_name, model_type="text-generation"
|
|
)
|
|
result = model.generate("Why is the sky green?", max_tokens=10)
|
|
assert result is not None
|
|
|
|
|
|
def test_gpt_generate() -> None:
|
|
"""Test pipeline generation from a gpt model."""
|
|
model = TextGenerationModel(
|
|
model_name_or_path="gpt2",
|
|
use_accelerate=False,
|
|
use_parallelize=False,
|
|
use_bitsandbytes=False,
|
|
use_deepspeed=False,
|
|
use_fp16=False,
|
|
device=-1,
|
|
)
|
|
inputs = "Why is the sky green?"
|
|
result = model.generate(inputs, max_tokens=10)
|
|
assert result is not None
|
|
assert len(result) == 1
|
|
assert result[0][0] == "\n\nThe sky is green.\n\nThe"
|
|
assert math.isclose(round(result[0][1], 3), -11.516)
|
|
|
|
result = model.generate("Cats are", max_tokens=10)
|
|
assert result is not None
|
|
assert len(result) == 1
|
|
assert result[0][0] == " not the only ones who are being targeted by the"
|
|
assert math.isclose(round(result[0][1], 3), -21.069)
|
|
|
|
result = model.generate(inputs, max_tokens=5)
|
|
assert result is not None
|
|
assert len(result) == 1
|
|
assert result[0][0] == "\n\nThe sky is"
|
|
assert math.isclose(round(result[0][1], 3), -6.046)
|
|
|
|
# Truncate max length
|
|
model.pipeline.max_length = 5
|
|
result = model.generate(inputs, max_tokens=2)
|
|
assert result is not None
|
|
assert len(result) == 1
|
|
assert result[0][0] == "\n\n"
|
|
assert math.isclose(round(result[0][1], 3), -1.414)
|
|
|
|
|
|
def test_encdec_generate() -> None:
|
|
"""Test pipeline generation from a gpt model."""
|
|
model = TextGenerationModel(
|
|
model_name_or_path="google/t5-small-lm-adapt",
|
|
use_accelerate=False,
|
|
use_parallelize=False,
|
|
use_bitsandbytes=False,
|
|
use_deepspeed=False,
|
|
use_fp16=False,
|
|
device=-1,
|
|
)
|
|
inputs = "Why is the sky green?"
|
|
result = model.generate(inputs, max_tokens=10)
|
|
assert result is not None
|
|
assert len(result) == 1
|
|
assert result[0][0] == "What is the sky green? What is the sky"
|
|
assert math.isclose(round(result[0][1], 3), -7.271)
|
|
|
|
result = model.generate("Cats are", max_tokens=10)
|
|
assert result is not None
|
|
assert len(result) == 1
|
|
assert result[0][0] == "a great way to get out of the house"
|
|
assert math.isclose(round(result[0][1], 3), -13.868)
|
|
|
|
result = model.generate(inputs, max_tokens=5)
|
|
assert result is not None
|
|
assert len(result) == 1
|
|
assert result[0][0] == "What is the sky green"
|
|
assert math.isclose(round(result[0][1], 3), -5.144)
|
|
|
|
# Truncate max length
|
|
model.pipeline.max_length = 5
|
|
result = model.generate(inputs, max_tokens=2)
|
|
assert result is not None
|
|
assert len(result) == 1
|
|
assert result[0][0] == "Is"
|
|
assert math.isclose(round(result[0][1], 3), -4.233)
|
|
|
|
|
|
def test_gpt_score() -> None:
|
|
"""Test pipeline generation from a gpt model."""
|
|
model = TextGenerationModel(
|
|
model_name_or_path="gpt2",
|
|
use_accelerate=False,
|
|
use_parallelize=False,
|
|
use_bitsandbytes=False,
|
|
use_deepspeed=False,
|
|
use_fp16=False,
|
|
device=-1,
|
|
)
|
|
inputs = ["Why is the sky green?", "Cats are butterflies"]
|
|
result = model.score_sequence(inputs)
|
|
assert result is not None
|
|
assert len(result) == 2
|
|
assert math.isclose(round(result[0][0], 3), -46.71)
|
|
assert math.isclose(round(result[1][0], 3), -12.752)
|
|
assert isinstance(result[0][1], list)
|
|
assert isinstance(result[1][1], list)
|
|
|
|
|
|
def test_embed() -> None:
|
|
"""Test embedding pipeline."""
|
|
model = TextGenerationModel(
|
|
model_name_or_path="gpt2",
|
|
use_accelerate=False,
|
|
use_parallelize=False,
|
|
use_bitsandbytes=False,
|
|
use_deepspeed=False,
|
|
use_fp16=False,
|
|
device=-1,
|
|
)
|
|
inputs = ["Why is the sky green?", "Cats are butterflies"]
|
|
embeddings = model.embed(inputs)
|
|
assert isinstance(embeddings, np.ndarray)
|
|
assert embeddings.shape == (2, 768)
|
|
|
|
model2 = SentenceTransformerModel(
|
|
model_name_or_path="all-mpnet-base-v2",
|
|
use_accelerate=False,
|
|
use_parallelize=False,
|
|
use_bitsandbytes=False,
|
|
use_deepspeed=False,
|
|
use_fp16=False,
|
|
device=-1,
|
|
)
|
|
inputs = ["Why is the sky green?", "Cats are butterflies"]
|
|
embeddings = model2.embed(inputs)
|
|
assert isinstance(embeddings, np.ndarray)
|
|
assert embeddings.shape == (2, 768)
|
|
|
|
|
|
def test_batch_gpt_generate() -> None:
|
|
"""Test pipeline generation from a gpt model."""
|
|
model = TextGenerationModel(
|
|
model_name_or_path="gpt2",
|
|
use_accelerate=False,
|
|
use_parallelize=False,
|
|
use_bitsandbytes=False,
|
|
use_deepspeed=False,
|
|
use_fp16=False,
|
|
device=-1,
|
|
)
|
|
inputs = ["Why is the sky green?", "Cats are"]
|
|
result = model.generate(inputs, max_tokens=10)
|
|
assert result is not None
|
|
assert len(result) == 2
|
|
assert result[0][0] == "\n\nThe sky is green.\n\nThe"
|
|
assert math.isclose(round(result[0][1], 3), -11.516)
|
|
assert result[1][0] == " not the only ones who are being targeted by the"
|
|
assert math.isclose(round(result[1][1], 3), -21.069)
|
|
|
|
result = model.generate(inputs, max_tokens=5)
|
|
assert result is not None
|
|
assert len(result) == 2
|
|
assert result[0][0] == "\n\nThe sky is"
|
|
assert math.isclose(round(result[0][1], 2), -6.05)
|
|
assert result[1][0] == " not the only ones who"
|
|
assert math.isclose(round(result[1][1], 3), -9.978)
|
|
|
|
# Truncate max length
|
|
model.pipeline.max_length = 5
|
|
result = model.generate(inputs, max_tokens=2)
|
|
assert result is not None
|
|
assert len(result) == 2
|
|
assert result[0][0] == "\n\n"
|
|
assert math.isclose(round(result[0][1], 3), -1.414)
|
|
assert result[1][0] == " not the"
|
|
assert math.isclose(round(result[1][1], 3), -6.246)
|
|
|
|
|
|
def test_batch_encdec_generate() -> None:
|
|
"""Test pipeline generation from a gpt model."""
|
|
model = TextGenerationModel(
|
|
model_name_or_path="google/t5-small-lm-adapt",
|
|
use_accelerate=False,
|
|
use_parallelize=False,
|
|
use_bitsandbytes=False,
|
|
use_deepspeed=False,
|
|
use_fp16=False,
|
|
device=-1,
|
|
)
|
|
inputs = ["Why is the sky green?", "Cats are"]
|
|
result = model.generate(inputs, max_tokens=10)
|
|
assert result is not None
|
|
assert len(result) == 2
|
|
assert result[0][0] == "What is the sky green? What is the sky"
|
|
assert math.isclose(round(result[0][1], 3), -7.271)
|
|
assert result[1][0] == "a great way to get out of the house"
|
|
assert math.isclose(round(result[1][1], 3), -13.868)
|
|
|
|
result = model.generate(inputs, max_tokens=5)
|
|
assert result is not None
|
|
assert len(result) == 2
|
|
assert result[0][0] == "What is the sky green"
|
|
assert math.isclose(round(result[0][1], 3), -5.144)
|
|
assert result[1][0] == "a great way to"
|
|
assert math.isclose(round(result[1][1], 3), -6.353)
|
|
|
|
# Truncate max length
|
|
model.pipeline.max_length = 5
|
|
result = model.generate(inputs, max_tokens=2)
|
|
assert result is not None
|
|
assert len(result) == 2
|
|
assert result[0][0] == "Is"
|
|
assert math.isclose(round(result[0][1], 3), -4.233)
|
|
assert result[1][0] == "a"
|
|
assert math.isclose(round(result[1][1], 3), -1.840)
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
(NOCUDA == 1 or MAXGPU == 0), reason="No cuda or GPUs found through nvidia-smi"
|
|
)
|
|
def test_gpt_deepspeed_generate() -> None:
|
|
"""Test deepspeed generation from a gpt model."""
|
|
model = TextGenerationModel(
|
|
model_name_or_path="gpt2",
|
|
use_accelerate=False,
|
|
use_parallelize=False,
|
|
use_bitsandbytes=False,
|
|
use_deepspeed=True,
|
|
use_fp16=False,
|
|
device=0,
|
|
)
|
|
inputs = "Why is the sky green?"
|
|
result = model.generate(inputs, max_tokens=10)
|
|
assert result is not None
|
|
assert len(result) == 1
|
|
assert result[0][0] == "\n\nThe sky is green.\n\nThe"
|
|
assert math.isclose(round(result[0][1], 3), -11.517)
|