2
0
mirror of https://github.com/lightninglabs/loop synced 2024-11-04 06:00:21 +00:00
loop/loopout_test.go
2023-10-03 19:36:40 +02:00

1018 lines
30 KiB
Go

package loop
import (
"context"
"errors"
"math"
"testing"
"time"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/wire"
"github.com/lightninglabs/lndclient"
"github.com/lightninglabs/loop/loopdb"
"github.com/lightninglabs/loop/sweep"
"github.com/lightninglabs/loop/test"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
"github.com/lightningnetwork/lnd/zpay32"
"github.com/stretchr/testify/require"
)
// TestLoopOutPaymentParameters tests the first part of the loop out process up
// to the point where the off-chain payments are made.
func TestLoopOutPaymentParameters(t *testing.T) {
t.Run("stable protocol", func(t *testing.T) {
testLoopOutPaymentParameters(t)
})
t.Run("experimental protocol", func(t *testing.T) {
loopdb.EnableExperimentalProtocol()
defer loopdb.ResetCurrentProtocolVersion()
testLoopOutPaymentParameters(t)
})
}
// TestLoopOutPaymentParameters tests the first part of the loop out process up
// to the point where the off-chain payments are made.
func testLoopOutPaymentParameters(t *testing.T) {
defer test.Guard(t)()
// Set up test context objects.
lnd := test.NewMockLnd()
ctx := test.NewContext(t, lnd)
server := newServerMock(lnd)
store := newStoreMock(t)
expiryChan := make(chan time.Time)
timerFactory := func(_ time.Duration) <-chan time.Time {
return expiryChan
}
height := int32(600)
cfg := &swapConfig{
lnd: &lnd.LndServices,
store: store,
server: server,
}
sweeper := &sweep.Sweeper{Lnd: &lnd.LndServices}
blockEpochChan := make(chan interface{})
statusChan := make(chan SwapInfo)
const maxParts = uint32(5)
chanSet := loopdb.ChannelSet{2, 3}
// Initiate the swap.
req := *testRequest
req.OutgoingChanSet = chanSet
initResult, err := newLoopOutSwap(
context.Background(), cfg, height, &req,
)
require.NoError(t, err)
swap := initResult.swap
// Execute the swap in its own goroutine.
errChan := make(chan error)
swapCtx, cancel := context.WithCancel(context.Background())
go func() {
err := swap.execute(swapCtx, &executeConfig{
statusChan: statusChan,
sweeper: sweeper,
blockEpochChan: blockEpochChan,
timerFactory: timerFactory,
loopOutMaxParts: maxParts,
cancelSwap: server.CancelLoopOutSwap,
verifySchnorrSig: mockVerifySchnorrSigFail,
}, height)
if err != nil {
log.Error(err)
}
errChan <- err
}()
store.assertLoopOutStored()
state := <-statusChan
require.Equal(t, loopdb.StateInitiated, state.State)
// Check that the SwapInfo contains the outgoing chan set
require.Equal(t, chanSet, state.OutgoingChanSet)
// Check that the SwapInfo does not contain a last hop
require.Nil(t, state.LastHop)
// Intercept the swap and prepay payments. Order is undefined.
payments := []test.RouterPaymentChannelMessage{
<-ctx.Lnd.RouterSendPaymentChannel,
<-ctx.Lnd.RouterSendPaymentChannel,
}
// Find the swap payment.
var swapPayment test.RouterPaymentChannelMessage
for _, p := range payments {
if p.Invoice == swap.SwapInvoice {
swapPayment = p
}
}
// Assert that it is sent as a multi-part payment.
require.Equal(t, maxParts, swapPayment.MaxParts)
// Verify the outgoing channel set restriction.
require.Equal(
t, []uint64(req.OutgoingChanSet), swapPayment.OutgoingChanIds,
)
// Swap is expected to register for confirmation of the htlc. Assert
// this to prevent a blocked channel in the mock.
ctx.AssertRegisterConf(false, defaultConfirmations)
// Cancel the swap. There is nothing else we need to assert. The payment
// parameters don't play a role in the remainder of the swap process.
cancel()
// Expect the swap to signal that it was cancelled.
require.Equal(t, context.Canceled, <-errChan)
}
// TestLateHtlcPublish tests that the client is not revealing the preimage if
// there are not enough blocks left.
func TestLateHtlcPublish(t *testing.T) {
t.Run("stable protocol", func(t *testing.T) {
testLateHtlcPublish(t)
})
t.Run("experimental protocol", func(t *testing.T) {
loopdb.EnableExperimentalProtocol()
defer loopdb.ResetCurrentProtocolVersion()
testLateHtlcPublish(t)
})
}
func testLateHtlcPublish(t *testing.T) {
defer test.Guard(t)()
lnd := test.NewMockLnd()
ctx := test.NewContext(t, lnd)
server := newServerMock(lnd)
store := newStoreMock(t)
expiryChan := make(chan time.Time)
timerFactory := func(expiry time.Duration) <-chan time.Time {
return expiryChan
}
height := int32(600)
cfg := newSwapConfig(&lnd.LndServices, store, server)
testRequest.Expiry = height + testLoopOutMinOnChainCltvDelta
initResult, err := newLoopOutSwap(
context.Background(), cfg, height, testRequest,
)
require.NoError(t, err)
swap := initResult.swap
sweeper := &sweep.Sweeper{Lnd: &lnd.LndServices}
blockEpochChan := make(chan interface{})
statusChan := make(chan SwapInfo)
errChan := make(chan error)
go func() {
err := swap.execute(context.Background(), &executeConfig{
statusChan: statusChan,
sweeper: sweeper,
blockEpochChan: blockEpochChan,
timerFactory: timerFactory,
cancelSwap: server.CancelLoopOutSwap,
verifySchnorrSig: mockVerifySchnorrSigFail,
}, height)
if err != nil {
log.Error(err)
}
errChan <- err
}()
store.assertLoopOutStored()
status := <-statusChan
require.Equal(t, loopdb.StateInitiated, status.State)
signalSwapPaymentResult := ctx.AssertPaid(swapInvoiceDesc)
signalPrepaymentResult := ctx.AssertPaid(prepayInvoiceDesc)
// Expect client to register for conf
ctx.AssertRegisterConf(false, defaultConfirmations)
// // Wait too long before publishing htlc.
blockEpochChan <- swap.CltvExpiry - 10
signalSwapPaymentResult(
errors.New(lndclient.PaymentResultUnknownPaymentHash),
)
signalPrepaymentResult(
errors.New(lndclient.PaymentResultUnknownPaymentHash),
)
store.assertStoreFinished(loopdb.StateFailTimeout)
status = <-statusChan
require.Equal(t, loopdb.StateFailTimeout, status.State)
require.NoError(t, <-errChan)
}
// TestCustomSweepConfTarget ensures we are able to sweep a Loop Out HTLC with a
// custom confirmation target.
func TestCustomSweepConfTarget(t *testing.T) {
t.Run("stable protocol", func(t *testing.T) {
testCustomSweepConfTarget(t)
})
t.Run("experimental protocol", func(t *testing.T) {
loopdb.EnableExperimentalProtocol()
defer loopdb.ResetCurrentProtocolVersion()
testCustomSweepConfTarget(t)
})
}
func testCustomSweepConfTarget(t *testing.T) {
defer test.Guard(t)()
lnd := test.NewMockLnd()
ctx := test.NewContext(t, lnd)
server := newServerMock(lnd)
// Use the highest sweep confirmation target before we attempt to use
// the default.
testReq := *testRequest
testReq.SweepConfTarget = testLoopOutMinOnChainCltvDelta -
DefaultSweepConfTargetDelta - 1
// Set on-chain HTLC CLTV.
testReq.Expiry = ctx.Lnd.Height + testLoopOutMinOnChainCltvDelta
// Set up custom fee estimates such that the lower confirmation target
// yields a much higher fee rate.
ctx.Lnd.SetFeeEstimate(testReq.SweepConfTarget, 250)
ctx.Lnd.SetFeeEstimate(DefaultSweepConfTarget, 10000)
cfg := newSwapConfig(
&lnd.LndServices, newStoreMock(t), server,
)
initResult, err := newLoopOutSwap(
context.Background(), cfg, ctx.Lnd.Height, &testReq,
)
require.NoError(t, err)
swap := initResult.swap
// Set up the required dependencies to execute the swap.
//
// TODO: create test context similar to loopInTestContext.
sweeper := &sweep.Sweeper{Lnd: &lnd.LndServices}
blockEpochChan := make(chan interface{})
statusChan := make(chan SwapInfo)
expiryChan := make(chan time.Time)
timerFactory := func(expiry time.Duration) <-chan time.Time {
return expiryChan
}
errChan := make(chan error)
go func() {
err := swap.execute(context.Background(), &executeConfig{
statusChan: statusChan,
blockEpochChan: blockEpochChan,
timerFactory: timerFactory,
sweeper: sweeper,
cancelSwap: server.CancelLoopOutSwap,
verifySchnorrSig: mockVerifySchnorrSigFail,
}, ctx.Lnd.Height)
if err != nil {
log.Error(err)
}
errChan <- err
}()
// The swap should be found in its initial state.
cfg.store.(*storeMock).assertLoopOutStored()
state := <-statusChan
require.Equal(t, loopdb.StateInitiated, state.State)
// We'll then pay both the swap and prepay invoice, which should trigger
// the server to publish the on-chain HTLC.
signalSwapPaymentResult := ctx.AssertPaid(swapInvoiceDesc)
signalPrepaymentResult := ctx.AssertPaid(prepayInvoiceDesc)
signalSwapPaymentResult(nil)
signalPrepaymentResult(nil)
// Notify the confirmation notification for the HTLC.
ctx.AssertRegisterConf(false, defaultConfirmations)
blockEpochChan <- ctx.Lnd.Height + 1
htlcTx := wire.NewMsgTx(2)
htlcTx.AddTxOut(&wire.TxOut{
Value: int64(swap.AmountRequested),
PkScript: swap.htlc.PkScript,
})
ctx.NotifyConf(htlcTx)
// The client should then register for a spend of the HTLC and attempt
// to sweep it using the custom confirmation target.
ctx.AssertRegisterSpendNtfn(swap.htlc.PkScript)
// Assert that we made a query to track our payment, as required for
// preimage push tracking.
trackPayment := ctx.AssertTrackPayment()
expiryChan <- time.Now()
// Expect a signing request for the HTLC success transaction.
if !IsTaprootSwap(&swap.SwapContract) {
<-ctx.Lnd.SignOutputRawChannel
}
cfg.store.(*storeMock).assertLoopOutState(loopdb.StatePreimageRevealed)
status := <-statusChan
require.Equal(t, loopdb.StatePreimageRevealed, status.State)
// When using taproot htlcs the flow is different as we do reveal the
// preimage before sweeping in order for the server to trust us with
// our MuSig2 signing attempts.
if IsTaprootSwap(&swap.SwapContract) {
preimage := <-server.preimagePush
require.Equal(t, swap.Preimage, preimage)
// Try MuSig2 signing first and fail it so that we go for a
// normal sweep.
for i := 0; i < maxMusigSweepRetries; i++ {
expiryChan <- time.Now()
preimage := <-server.preimagePush
require.Equal(t, swap.Preimage, preimage)
}
<-ctx.Lnd.SignOutputRawChannel
}
// assertSweepTx performs some sanity checks on a sweep transaction to
// ensure it was constructed correctly.
assertSweepTx := func(expConfTarget int32) *wire.MsgTx {
t.Helper()
sweepTx := ctx.ReceiveTx()
require.Equal(
t, htlcTx.TxHash(),
sweepTx.TxIn[0].PreviousOutPoint.Hash,
)
// The fee used for the sweep transaction is an estimate based
// on the maximum witness size, so we should expect to see a
// lower fee when using the actual witness size of the
// transaction.
fee := btcutil.Amount(
htlcTx.TxOut[0].Value - sweepTx.TxOut[0].Value,
)
weight := blockchain.GetTransactionWeight(btcutil.NewTx(sweepTx))
feeRate, err := ctx.Lnd.WalletKit.EstimateFeeRate(
context.Background(), expConfTarget,
)
require.NoError(t, err, "unable to retrieve fee estimate")
minFee := feeRate.FeeForWeight(weight)
// Just an estimate that works to sanity check fee upper bound.
maxFee := btcutil.Amount(float64(minFee) * 1.5)
require.GreaterOrEqual(t, fee, minFee)
require.LessOrEqual(t, fee, maxFee)
return sweepTx
}
// The sweep should have a fee that corresponds to the custom
// confirmation target.
_ = assertSweepTx(testReq.SweepConfTarget)
// Once we have published an on chain sweep, we expect a preimage to
// have been pushed to our server.
if !IsTaprootSwap(&swap.SwapContract) {
preimage := <-server.preimagePush
require.Equal(t, swap.Preimage, preimage)
}
// Now that we have pushed our preimage to the sever, we send an update
// indicating that our off chain htlc is settled. We do this so that
// we don't have to keep consuming preimage pushes from our server mock
// for every sweep attempt.
trackPayment.Updates <- lndclient.PaymentStatus{
State: lnrpc.Payment_SUCCEEDED,
}
// We'll then notify the height at which we begin using the default
// confirmation target.
defaultConfTargetHeight := ctx.Lnd.Height +
testLoopOutMinOnChainCltvDelta - DefaultSweepConfTargetDelta
blockEpochChan <- defaultConfTargetHeight
expiryChan <- time.Now()
// Expect another signing request.
<-ctx.Lnd.SignOutputRawChannel
// We should expect to see another sweep using the higher fee since the
// spend hasn't been confirmed yet.
sweepTx := assertSweepTx(DefaultSweepConfTarget)
// Notify the spend so that the swap reaches its final state.
ctx.NotifySpend(sweepTx, 0)
cfg.store.(*storeMock).assertLoopOutState(loopdb.StateSuccess)
status = <-statusChan
require.Equal(t, loopdb.StateSuccess, status.State)
require.NoError(t, <-errChan)
}
// TestPreimagePush tests or logic that decides whether to push our preimage to
// the server. First, we test the case where we have not yet disclosed our
// preimage with a sweep, so we do not want to push our preimage yet. Next, we
// broadcast a sweep attempt and push our preimage to the server. In this stage
// we mock a server failure by not sending a settle update for our payment.
// Finally, we make a last sweep attempt, push the preimage (because we have
// not detected our settle) and settle the off chain htlc, indicating that the
// server successfully settled using the preimage push. In this test, we need
// to start with a fee rate that will be too high, then progress to an
// acceptable one.
func TestPreimagePush(t *testing.T) {
t.Run("stable protocol", func(t *testing.T) {
testPreimagePush(t)
})
t.Run("experimental protocol", func(t *testing.T) {
loopdb.EnableExperimentalProtocol()
defer loopdb.ResetCurrentProtocolVersion()
testPreimagePush(t)
})
}
func testPreimagePush(t *testing.T) {
defer test.Guard(t)()
lnd := test.NewMockLnd()
ctx := test.NewContext(t, lnd)
server := newServerMock(lnd)
testReq := *testRequest
testReq.SweepConfTarget = 10
testReq.Expiry = ctx.Lnd.Height + testLoopOutMinOnChainCltvDelta
// We set our mock fee estimate for our target sweep confs to be our
// max miner fee *2, so that our fee will definitely be above what we
// are willing to pay, and we will not sweep.
ctx.Lnd.SetFeeEstimate(
testReq.SweepConfTarget, chainfee.SatPerKWeight(
testReq.MaxMinerFee*2,
),
)
cfg := newSwapConfig(
&lnd.LndServices, newStoreMock(t), server,
)
initResult, err := newLoopOutSwap(
context.Background(), cfg, ctx.Lnd.Height, &testReq,
)
require.NoError(t, err)
swap := initResult.swap
// Set up the required dependencies to execute the swap.
sweeper := &sweep.Sweeper{Lnd: &lnd.LndServices}
blockEpochChan := make(chan interface{})
statusChan := make(chan SwapInfo)
expiryChan := make(chan time.Time)
timerFactory := func(_ time.Duration) <-chan time.Time {
return expiryChan
}
errChan := make(chan error)
go func() {
err := swap.execute(context.Background(), &executeConfig{
statusChan: statusChan,
blockEpochChan: blockEpochChan,
timerFactory: timerFactory,
sweeper: sweeper,
cancelSwap: server.CancelLoopOutSwap,
verifySchnorrSig: mockVerifySchnorrSigFail,
}, ctx.Lnd.Height)
if err != nil {
log.Error(err)
}
errChan <- err
}()
// The swap should be found in its initial state.
cfg.store.(*storeMock).assertLoopOutStored()
state := <-statusChan
require.Equal(t, loopdb.StateInitiated, state.State)
// We'll then pay both the swap and prepay invoice, which should trigger
// the server to publish the on-chain HTLC.
signalSwapPaymentResult := ctx.AssertPaid(swapInvoiceDesc)
signalPrepaymentResult := ctx.AssertPaid(prepayInvoiceDesc)
signalSwapPaymentResult(nil)
signalPrepaymentResult(nil)
// Notify the confirmation notification for the HTLC.
ctx.AssertRegisterConf(false, defaultConfirmations)
blockEpochChan <- ctx.Lnd.Height + 1
htlcTx := wire.NewMsgTx(2)
htlcTx.AddTxOut(&wire.TxOut{
Value: int64(swap.AmountRequested),
PkScript: swap.htlc.PkScript,
})
ctx.NotifyConf(htlcTx)
// The client should then register for a spend of the HTLC and attempt
// to sweep it using the custom confirmation target.
ctx.AssertRegisterSpendNtfn(swap.htlc.PkScript)
// Assert that we made a query to track our payment, as required for
// preimage push tracking.
trackPayment := ctx.AssertTrackPayment()
// Tick the expiry channel, we are still using our client confirmation
// target at this stage which has fees higher than our max acceptable
// fee. We do not expect a sweep attempt at this point. Since our
// preimage is not revealed, we also do not expect a preimage push.
expiryChan <- testTime
// When using taproot htlcs the flow is different as we do reveal the
// preimage before sweeping in order for the server to trust us with
// our MuSig2 signing attempts.
if IsTaprootSwap(&swap.SwapContract) {
cfg.store.(*storeMock).assertLoopOutState(
loopdb.StatePreimageRevealed,
)
status := <-statusChan
require.Equal(
t, status.State, loopdb.StatePreimageRevealed,
)
preimage := <-server.preimagePush
require.Equal(t, swap.Preimage, preimage)
// Try MuSig2 signing first and fail it so that we go for a
// normal sweep.
for i := 0; i < maxMusigSweepRetries; i++ {
expiryChan <- time.Now()
preimage := <-server.preimagePush
require.Equal(t, swap.Preimage, preimage)
}
<-ctx.Lnd.SignOutputRawChannel
// We expect the sweep tx to have been published.
ctx.ReceiveTx()
}
// Since we don't have a reliable mechanism to non-intrusively avoid
// races by setting the fee estimate too soon, let's sleep here a bit
// to ensure the first sweep fails.
time.Sleep(500 * time.Millisecond)
// Now we decrease our fees for the swap's confirmation target to less
// than the maximum miner fee.
ctx.Lnd.SetFeeEstimate(testReq.SweepConfTarget, chainfee.SatPerKWeight(
testReq.MaxMinerFee/2,
))
// Now when we report a new block and tick our expiry fee timer, and
// fees are acceptably low so we expect our sweep to be published.
blockEpochChan <- ctx.Lnd.Height + 2
expiryChan <- testTime
if IsTaprootSwap(&swap.SwapContract) {
preimage := <-server.preimagePush
require.Equal(t, swap.Preimage, preimage)
}
// Expect a signing request for the HTLC success transaction.
<-ctx.Lnd.SignOutputRawChannel
if !IsTaprootSwap(&swap.SwapContract) {
// This is the first time we have swept, so we expect our
// preimage revealed state to be set.
cfg.store.(*storeMock).assertLoopOutState(
loopdb.StatePreimageRevealed,
)
status := <-statusChan
require.Equal(
t, status.State, loopdb.StatePreimageRevealed,
)
}
// We expect the sweep tx to have been published.
ctx.ReceiveTx()
if !IsTaprootSwap(&swap.SwapContract) {
// Once we have published an on chain sweep, we expect a
// preimage to have been pushed to the server after the sweep.
preimage := <-server.preimagePush
require.Equal(t, swap.Preimage, preimage)
}
// To mock a server failure, we do not send a payment settled update
// for our off chain payment yet. We also do not confirm our sweep on
// chain yet so we can test our preimage push retry logic. Instead, we
// tick the expiry chan again to prompt another sweep.
expiryChan <- testTime
if IsTaprootSwap(&swap.SwapContract) {
preimage := <-server.preimagePush
require.Equal(t, swap.Preimage, preimage)
}
// We expect another signing request for out sweep, and publish of our
// sweep transaction.
<-ctx.Lnd.SignOutputRawChannel
ctx.ReceiveTx()
// Since we have not yet been notified of an off chain settle, and we
// have attempted to sweep again, we expect another preimage push
// attempt.
if !IsTaprootSwap(&swap.SwapContract) {
preimage := <-server.preimagePush
require.Equal(t, swap.Preimage, preimage)
}
// This time, we send a payment succeeded update into our payment stream
// to reflect that the server received our preimage push and settled off
// chain.
trackPayment.Updates <- lndclient.PaymentStatus{
State: lnrpc.Payment_SUCCEEDED,
}
// We tick one last time, this time expecting a sweep but no preimage
// push. The test's mocked preimage channel is un-buffered, so our test
// would hang if we pushed the preimage here.
expiryChan <- testTime
<-ctx.Lnd.SignOutputRawChannel
sweepTx := ctx.ReceiveTx()
// Finally, we put this swap out of its misery and notify a successful
// spend our sweepTx and assert that the swap succeeds.
ctx.NotifySpend(sweepTx, 0)
cfg.store.(*storeMock).assertLoopOutState(loopdb.StateSuccess)
status := <-statusChan
require.Equal(
t, status.State, loopdb.StateSuccess,
)
require.NoError(t, <-errChan)
}
// TestFailedOffChainCancelation tests sending of a cancelation message to
// the server when a swap fails due to off-chain routing.
func TestFailedOffChainCancelation(t *testing.T) {
t.Run("stable protocol", func(t *testing.T) {
testFailedOffChainCancelation(t)
})
t.Run("experimental protocol", func(t *testing.T) {
loopdb.EnableExperimentalProtocol()
defer loopdb.ResetCurrentProtocolVersion()
testFailedOffChainCancelation(t)
})
}
func testFailedOffChainCancelation(t *testing.T) {
defer test.Guard(t)()
lnd := test.NewMockLnd()
ctx := test.NewContext(t, lnd)
server := newServerMock(lnd)
testReq := *testRequest
testReq.Expiry = lnd.Height + 20
cfg := newSwapConfig(
&lnd.LndServices, newStoreMock(t), server,
)
initResult, err := newLoopOutSwap(
context.Background(), cfg, lnd.Height, &testReq,
)
require.NoError(t, err)
swap := initResult.swap
// Set up the required dependencies to execute the swap.
sweeper := &sweep.Sweeper{Lnd: &lnd.LndServices}
blockEpochChan := make(chan interface{})
statusChan := make(chan SwapInfo)
expiryChan := make(chan time.Time)
timerFactory := func(_ time.Duration) <-chan time.Time {
return expiryChan
}
errChan := make(chan error)
go func() {
cfg := &executeConfig{
statusChan: statusChan,
sweeper: sweeper,
blockEpochChan: blockEpochChan,
timerFactory: timerFactory,
cancelSwap: server.CancelLoopOutSwap,
verifySchnorrSig: mockVerifySchnorrSigFail,
}
err := swap.execute(context.Background(), cfg, ctx.Lnd.Height)
errChan <- err
}()
// The swap should be found in its initial state.
cfg.store.(*storeMock).assertLoopOutStored()
state := <-statusChan
require.Equal(t, loopdb.StateInitiated, state.State)
// Assert that we register for htlc confirmation notifications.
ctx.AssertRegisterConf(false, defaultConfirmations)
// We expect prepayment and invoice to be dispatched, order is unknown.
pmt1 := <-ctx.Lnd.RouterSendPaymentChannel
pmt2 := <-ctx.Lnd.RouterSendPaymentChannel
failUpdate := lndclient.PaymentStatus{
State: lnrpc.Payment_FAILED,
FailureReason: lnrpc.PaymentFailureReason_FAILURE_REASON_ERROR,
Htlcs: []*lndclient.HtlcAttempt{
{
// Include a non-failed htlc to test that we
// only report failed htlcs.
Status: lnrpc.HTLCAttempt_IN_FLIGHT,
},
// Add one htlc that failed within the server's
// infrastructure.
{
Status: lnrpc.HTLCAttempt_FAILED,
Route: &lnrpc.Route{
Hops: []*lnrpc.Hop{
{}, {}, {},
},
},
Failure: &lndclient.HtlcFailure{
FailureSourceIndex: 1,
},
},
// Add one htlc that failed in the network at wide.
{
Status: lnrpc.HTLCAttempt_FAILED,
Route: &lnrpc.Route{
Hops: []*lnrpc.Hop{
{}, {}, {}, {}, {},
},
},
Failure: &lndclient.HtlcFailure{
FailureSourceIndex: 1,
},
},
},
}
successUpdate := lndclient.PaymentStatus{
State: lnrpc.Payment_SUCCEEDED,
}
// We want to fail our swap payment and succeed the prepush, so we send
// a failure update to the payment that has the larger amount.
if pmt1.Amount > pmt2.Amount {
pmt1.TrackPaymentMessage.Updates <- failUpdate
pmt2.TrackPaymentMessage.Updates <- successUpdate
} else {
pmt1.TrackPaymentMessage.Updates <- successUpdate
pmt2.TrackPaymentMessage.Updates <- failUpdate
}
invoice, err := zpay32.Decode(
swap.LoopOutContract.SwapInvoice, lnd.ChainParams,
)
require.NoError(t, err)
require.NotNil(t, invoice.PaymentAddr)
swapCancelation := &outCancelDetails{
hash: swap.hash,
paymentAddr: *invoice.PaymentAddr,
metadata: routeCancelMetadata{
paymentType: paymentTypeInvoice,
failureReason: failUpdate.FailureReason,
attempts: []uint32{
2,
math.MaxUint32,
},
},
}
server.assertSwapCanceled(t, swapCancelation)
// Finally, the swap should be recorded with failed off chain timeout.
cfg.store.(*storeMock).assertLoopOutState(
loopdb.StateFailOffchainPayments,
)
state = <-statusChan
require.Equal(t, state.State, loopdb.StateFailOffchainPayments)
require.NoError(t, <-errChan)
}
// TestLoopOutMuSig2Sweep tests the loop out sweep flow when the MuSig2 signing
// process is successful.
func TestLoopOutMuSig2Sweep(t *testing.T) {
defer test.Guard(t)()
// TODO(bhandras): remove when MuSig2 is default.
loopdb.EnableExperimentalProtocol()
defer loopdb.ResetCurrentProtocolVersion()
lnd := test.NewMockLnd()
ctx := test.NewContext(t, lnd)
server := newServerMock(lnd)
testReq := *testRequest
testReq.SweepConfTarget = 10
testReq.Expiry = ctx.Lnd.Height + testLoopOutMinOnChainCltvDelta
// We set our mock fee estimate for our target sweep confs to be our
// max miner fee * 2. With MuSig2 we still expect that the client will
// publish the sweep but with the fee clamped to the maximum allowed
// miner fee as the preimage is revealed before the sweep txn is
// published.
ctx.Lnd.SetFeeEstimate(
testReq.SweepConfTarget, chainfee.SatPerKWeight(
testReq.MaxMinerFee*2,
),
)
cfg := newSwapConfig(
&lnd.LndServices, newStoreMock(t), server,
)
initResult, err := newLoopOutSwap(
context.Background(), cfg, ctx.Lnd.Height, &testReq,
)
require.NoError(t, err)
swap := initResult.swap
// Set up the required dependencies to execute the swap.
sweeper := &sweep.Sweeper{Lnd: &lnd.LndServices}
blockEpochChan := make(chan interface{})
statusChan := make(chan SwapInfo)
expiryChan := make(chan time.Time)
timerFactory := func(_ time.Duration) <-chan time.Time {
return expiryChan
}
errChan := make(chan error)
// Mock a successful signature verify to make sure we don't fail
// creating the MuSig2 sweep.
mockVerifySchnorrSigSuccess := func(pubKey *btcec.PublicKey, hash,
sig []byte) error {
return nil
}
go func() {
err := swap.execute(context.Background(), &executeConfig{
statusChan: statusChan,
blockEpochChan: blockEpochChan,
timerFactory: timerFactory,
sweeper: sweeper,
cancelSwap: server.CancelLoopOutSwap,
verifySchnorrSig: mockVerifySchnorrSigSuccess,
}, ctx.Lnd.Height)
if err != nil {
log.Error(err)
}
errChan <- err
}()
// The swap should be found in its initial state.
cfg.store.(*storeMock).assertLoopOutStored()
state := <-statusChan
require.Equal(t, loopdb.StateInitiated, state.State)
// We'll then pay both the swap and prepay invoice, which should trigger
// the server to publish the on-chain HTLC.
signalSwapPaymentResult := ctx.AssertPaid(swapInvoiceDesc)
signalPrepaymentResult := ctx.AssertPaid(prepayInvoiceDesc)
signalSwapPaymentResult(nil)
signalPrepaymentResult(nil)
// Notify the confirmation notification for the HTLC.
ctx.AssertRegisterConf(false, defaultConfirmations)
blockEpochChan <- ctx.Lnd.Height + 1
htlcTx := wire.NewMsgTx(2)
htlcTx.AddTxOut(&wire.TxOut{
Value: int64(swap.AmountRequested),
PkScript: swap.htlc.PkScript,
})
ctx.NotifyConf(htlcTx)
// The client should then register for a spend of the HTLC and attempt
// to sweep it using the custom confirmation target.
ctx.AssertRegisterSpendNtfn(swap.htlc.PkScript)
// Assert that we made a query to track our payment, as required for
// preimage push tracking.
trackPayment := ctx.AssertTrackPayment()
// Tick the expiry channel, we are still using our client confirmation
// target at this stage which has fees higher than our max acceptable
// fee. We do not expect a sweep attempt at this point. Since our
// preimage is not revealed, we also do not expect a preimage push.
expiryChan <- testTime
// When using taproot htlcs the flow is different as we do reveal the
// preimage before sweeping in order for the server to trust us with
// our MuSig2 signing attempts.
cfg.store.(*storeMock).assertLoopOutState(
loopdb.StatePreimageRevealed,
)
status := <-statusChan
require.Equal(
t, status.State, loopdb.StatePreimageRevealed,
)
preimage := <-server.preimagePush
require.Equal(t, swap.Preimage, preimage)
// We expect the sweep tx to have been published.
ctx.ReceiveTx()
// Since we don't have a reliable mechanism to non-intrusively avoid
// races by setting the fee estimate too soon, let's sleep here a bit
// to ensure the first sweep fails.
time.Sleep(500 * time.Millisecond)
// Now we decrease our fees for the swap's confirmation target to less
// than the maximum miner fee.
ctx.Lnd.SetFeeEstimate(testReq.SweepConfTarget, chainfee.SatPerKWeight(
testReq.MaxMinerFee/2,
))
// Now when we report a new block and tick our expiry fee timer, and
// fees are acceptably low so we expect our sweep to be published.
blockEpochChan <- ctx.Lnd.Height + 2
expiryChan <- testTime
preimage = <-server.preimagePush
require.Equal(t, swap.Preimage, preimage)
// We expect the sweep tx to have been published.
sweepTx := ctx.ReceiveTx()
// This time, we send a payment succeeded update into our payment stream
// to reflect that the server received our preimage push and settled off
// chain.
trackPayment.Updates <- lndclient.PaymentStatus{
State: lnrpc.Payment_SUCCEEDED,
}
// Make sure our sweep tx has a single witness indicating keyspend.
require.Len(t, sweepTx.TxIn[0].Witness, 1)
// Finally, we put this swap out of its misery and notify a successful
// spend our sweepTx and assert that the swap succeeds.
ctx.NotifySpend(sweepTx, 0)
cfg.store.(*storeMock).assertLoopOutState(loopdb.StateSuccess)
status = <-statusChan
require.Equal(t, status.State, loopdb.StateSuccess)
require.NoError(t, <-errChan)
}