mirror of
https://github.com/lightninglabs/loop
synced 2024-11-13 13:10:30 +00:00
293 lines
8.3 KiB
Go
293 lines
8.3 KiB
Go
package liquidity
|
|
|
|
import (
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/lightninglabs/lndclient"
|
|
"github.com/lightninglabs/loop"
|
|
"github.com/lightninglabs/loop/labels"
|
|
"github.com/lightninglabs/loop/loopdb"
|
|
"github.com/lightninglabs/loop/test"
|
|
"github.com/lightningnetwork/lnd/lntypes"
|
|
"github.com/lightningnetwork/lnd/lnwire"
|
|
)
|
|
|
|
// TestAutoLoopDisabled tests the case where we need to perform a swap, but
|
|
// autoloop is not enabled.
|
|
func TestAutoLoopDisabled(t *testing.T) {
|
|
defer test.Guard(t)()
|
|
|
|
// Set parameters for a channel that will require a swap.
|
|
channels := []lndclient.ChannelInfo{
|
|
channel1,
|
|
}
|
|
|
|
params := defaultParameters
|
|
params.ChannelRules = map[lnwire.ShortChannelID]*ThresholdRule{
|
|
chanID1: chanRule,
|
|
}
|
|
|
|
c := newAutoloopTestCtx(t, params, channels, testRestrictions)
|
|
c.start()
|
|
|
|
// We expect a single quote to be required for our swap on channel 1.
|
|
// We set its quote to have acceptable fees for our current limit.
|
|
quotes := []quoteRequestResp{
|
|
{
|
|
request: &loop.LoopOutQuoteRequest{
|
|
Amount: chan1Rec.Amount,
|
|
SweepConfTarget: chan1Rec.SweepConfTarget,
|
|
},
|
|
quote: testQuote,
|
|
},
|
|
}
|
|
|
|
// Trigger an autoloop attempt for our test context with no existing
|
|
// loop in/out swaps. We expect a swap for our channel to be suggested,
|
|
// but do not expect any swaps to be executed, since autoloop is
|
|
// disabled by default.
|
|
c.autoloop(1, chan1Rec.Amount+1, nil, quotes, nil)
|
|
|
|
// Trigger another autoloop, this time setting our server restrictions
|
|
// to have a minimum swap amount greater than the amount that we need
|
|
// to swap. In this case we don't even expect to get a quote, because
|
|
// our suggested swap is beneath the minimum swap size.
|
|
c.autoloop(chan1Rec.Amount+1, chan1Rec.Amount+2, nil, nil, nil)
|
|
|
|
c.stop()
|
|
}
|
|
|
|
// TestAutoLoopEnabled tests enabling the liquidity manger's autolooper. To keep
|
|
// the test simple, we do not update actual lnd channel balances, but rather
|
|
// run our mock with two channels that will always require a loop out according
|
|
// to our rules. This allows us to test the other restrictions placed on the
|
|
// autolooper (such as balance, and in-flight swaps) rather than need to worry
|
|
// about calculating swap amounts and thresholds.
|
|
func TestAutoLoopEnabled(t *testing.T) {
|
|
defer test.Guard(t)()
|
|
|
|
channels := []lndclient.ChannelInfo{
|
|
channel1, channel2,
|
|
}
|
|
|
|
// Create a set of parameters with autoloop enabled. The autoloop budget
|
|
// is set to allow exactly 2 swaps at the prices that we set in our
|
|
// test quotes.
|
|
params := Parameters{
|
|
AutoOut: true,
|
|
AutoFeeBudget: 40066,
|
|
AutoFeeStartDate: testTime,
|
|
MaxAutoInFlight: 2,
|
|
FailureBackOff: time.Hour,
|
|
SweepFeeRateLimit: 20000,
|
|
SweepConfTarget: 10,
|
|
MaximumPrepay: 20000,
|
|
MaximumSwapFeePPM: 1000,
|
|
MaximumRoutingFeePPM: 1000,
|
|
MaximumPrepayRoutingFeePPM: 1000,
|
|
MaximumMinerFee: 20000,
|
|
ChannelRules: map[lnwire.ShortChannelID]*ThresholdRule{
|
|
chanID1: chanRule,
|
|
chanID2: chanRule,
|
|
},
|
|
}
|
|
|
|
c := newAutoloopTestCtx(t, params, channels, testRestrictions)
|
|
c.start()
|
|
|
|
// Calculate our maximum allowed fees and create quotes that fall within
|
|
// our budget.
|
|
var (
|
|
amt = chan1Rec.Amount
|
|
|
|
maxSwapFee = ppmToSat(amt, params.MaximumSwapFeePPM)
|
|
|
|
// Create a quote that is within our limits. We do not set miner
|
|
// fee because this value is not actually set by the server.
|
|
quote1 = &loop.LoopOutQuote{
|
|
SwapFee: maxSwapFee,
|
|
PrepayAmount: params.MaximumPrepay - 10,
|
|
}
|
|
|
|
quote2 = &loop.LoopOutQuote{
|
|
SwapFee: maxSwapFee,
|
|
PrepayAmount: params.MaximumPrepay - 20,
|
|
}
|
|
|
|
quoteRequest = &loop.LoopOutQuoteRequest{
|
|
Amount: amt,
|
|
SweepConfTarget: params.SweepConfTarget,
|
|
}
|
|
|
|
quotes = []quoteRequestResp{
|
|
{
|
|
request: quoteRequest,
|
|
quote: quote1,
|
|
},
|
|
{
|
|
request: quoteRequest,
|
|
quote: quote2,
|
|
},
|
|
}
|
|
|
|
maxRouteFee = ppmToSat(amt, params.MaximumRoutingFeePPM)
|
|
|
|
chan1Swap = &loop.OutRequest{
|
|
Amount: amt,
|
|
MaxSwapRoutingFee: maxRouteFee,
|
|
MaxPrepayRoutingFee: ppmToSat(
|
|
quote1.PrepayAmount,
|
|
params.MaximumPrepayRoutingFeePPM,
|
|
),
|
|
MaxSwapFee: quote1.SwapFee,
|
|
MaxPrepayAmount: quote1.PrepayAmount,
|
|
MaxMinerFee: params.MaximumMinerFee,
|
|
SweepConfTarget: params.SweepConfTarget,
|
|
OutgoingChanSet: loopdb.ChannelSet{chanID1.ToUint64()},
|
|
Label: labels.AutoOutLabel(),
|
|
Initiator: autoloopSwapInitiator,
|
|
}
|
|
|
|
chan2Swap = &loop.OutRequest{
|
|
Amount: amt,
|
|
MaxSwapRoutingFee: maxRouteFee,
|
|
MaxPrepayRoutingFee: ppmToSat(
|
|
quote2.PrepayAmount,
|
|
params.MaximumPrepayRoutingFeePPM,
|
|
),
|
|
MaxSwapFee: quote2.SwapFee,
|
|
MaxPrepayAmount: quote2.PrepayAmount,
|
|
MaxMinerFee: params.MaximumMinerFee,
|
|
SweepConfTarget: params.SweepConfTarget,
|
|
OutgoingChanSet: loopdb.ChannelSet{chanID2.ToUint64()},
|
|
Label: labels.AutoOutLabel(),
|
|
Initiator: autoloopSwapInitiator,
|
|
}
|
|
|
|
loopOuts = []loopOutRequestResp{
|
|
{
|
|
request: chan1Swap,
|
|
response: &loop.LoopOutSwapInfo{
|
|
SwapHash: lntypes.Hash{1},
|
|
},
|
|
},
|
|
{
|
|
request: chan2Swap,
|
|
response: &loop.LoopOutSwapInfo{
|
|
SwapHash: lntypes.Hash{2},
|
|
},
|
|
},
|
|
}
|
|
)
|
|
|
|
// Tick our autolooper with no existing swaps, we expect a loop out
|
|
// swap to be dispatched for each channel.
|
|
c.autoloop(1, amt+1, nil, quotes, loopOuts)
|
|
|
|
// Tick again with both of our swaps in progress. We haven't shifted our
|
|
// channel balances at all, so swaps should still be suggested, but we
|
|
// have 2 swaps in flight so we do not expect any suggestion.
|
|
existing := []*loopdb.LoopOut{
|
|
existingSwapFromRequest(chan1Swap, testTime, nil),
|
|
existingSwapFromRequest(chan2Swap, testTime, nil),
|
|
}
|
|
|
|
c.autoloop(1, amt+1, existing, nil, nil)
|
|
|
|
// Now, we update our channel 2 swap to have failed due to off chain
|
|
// failure and our first swap to have succeeded.
|
|
now := c.testClock.Now()
|
|
failedOffChain := []*loopdb.LoopEvent{
|
|
{
|
|
SwapStateData: loopdb.SwapStateData{
|
|
State: loopdb.StateFailOffchainPayments,
|
|
},
|
|
Time: now,
|
|
},
|
|
}
|
|
|
|
success := []*loopdb.LoopEvent{
|
|
{
|
|
SwapStateData: loopdb.SwapStateData{
|
|
State: loopdb.StateSuccess,
|
|
Cost: loopdb.SwapCost{
|
|
Server: quote1.SwapFee,
|
|
Onchain: params.MaximumMinerFee,
|
|
Offchain: maxRouteFee +
|
|
chan1Rec.MaxPrepayRoutingFee,
|
|
},
|
|
},
|
|
Time: now,
|
|
},
|
|
}
|
|
|
|
quotes = []quoteRequestResp{
|
|
{
|
|
request: quoteRequest,
|
|
quote: quote1,
|
|
},
|
|
}
|
|
|
|
loopOuts = []loopOutRequestResp{
|
|
{
|
|
request: chan1Swap,
|
|
response: &loop.LoopOutSwapInfo{
|
|
SwapHash: lntypes.Hash{3},
|
|
},
|
|
},
|
|
}
|
|
|
|
existing = []*loopdb.LoopOut{
|
|
existingSwapFromRequest(chan1Swap, testTime, success),
|
|
existingSwapFromRequest(chan2Swap, testTime, failedOffChain),
|
|
}
|
|
|
|
// We tick again, this time we expect another swap on channel 1 (which
|
|
// still has balances which reflect that we need to swap), but nothing
|
|
// for channel 2, since it has had a failure.
|
|
c.autoloop(1, amt+1, existing, quotes, loopOuts)
|
|
|
|
// Now, we progress our time so that we have sufficiently backed off
|
|
// for channel 2, and could perform another swap.
|
|
c.testClock.SetTime(now.Add(params.FailureBackOff))
|
|
|
|
// Our existing swaps (1 successful, one pending) have used our budget
|
|
// so we no longer expect any swaps to automatically dispatch.
|
|
existing = []*loopdb.LoopOut{
|
|
existingSwapFromRequest(chan1Swap, testTime, success),
|
|
existingSwapFromRequest(chan1Swap, c.testClock.Now(), nil),
|
|
existingSwapFromRequest(chan2Swap, testTime, failedOffChain),
|
|
}
|
|
|
|
c.autoloop(1, amt+1, existing, quotes, nil)
|
|
|
|
c.stop()
|
|
}
|
|
|
|
// existingSwapFromRequest is a helper function which returns the db
|
|
// representation of a loop out request with the event set provided.
|
|
func existingSwapFromRequest(request *loop.OutRequest, initTime time.Time,
|
|
events []*loopdb.LoopEvent) *loopdb.LoopOut {
|
|
|
|
return &loopdb.LoopOut{
|
|
Loop: loopdb.Loop{
|
|
Events: events,
|
|
},
|
|
Contract: &loopdb.LoopOutContract{
|
|
SwapContract: loopdb.SwapContract{
|
|
AmountRequested: request.Amount,
|
|
MaxSwapFee: request.MaxSwapFee,
|
|
MaxMinerFee: request.MaxMinerFee,
|
|
InitiationTime: initTime,
|
|
Label: request.Label,
|
|
},
|
|
SwapInvoice: "",
|
|
MaxSwapRoutingFee: request.MaxSwapRoutingFee,
|
|
SweepConfTarget: request.SweepConfTarget,
|
|
OutgoingChanSet: request.OutgoingChanSet,
|
|
MaxPrepayRoutingFee: request.MaxSwapRoutingFee,
|
|
},
|
|
}
|
|
}
|