2
0
mirror of https://github.com/lightninglabs/loop synced 2024-11-16 00:12:52 +00:00
loop/liquidity/parameters.go
2023-10-03 19:36:40 +02:00

614 lines
18 KiB
Go

package liquidity
import (
"errors"
"fmt"
"strings"
"time"
"github.com/btcsuite/btcd/btcutil"
"github.com/lightninglabs/lndclient"
"github.com/lightninglabs/loop/swap"
"github.com/lightningnetwork/lnd/lnrpc/walletrpc"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing/route"
clientrpc "github.com/lightninglabs/loop/looprpc"
)
var (
// defaultParameters contains the default parameters that we start our
// liquidity manager with.
defaultParameters = Parameters{
AutoFeeBudget: defaultBudget,
AutoFeeRefreshPeriod: defaultBudgetRefreshPeriod,
AutoloopBudgetLastRefresh: time.Now(),
DestAddr: nil,
MaxAutoInFlight: defaultMaxInFlight,
ChannelRules: make(map[lnwire.ShortChannelID]*SwapRule),
PeerRules: make(map[route.Vertex]*SwapRule),
FailureBackOff: defaultFailureBackoff,
SweepConfTarget: defaultConfTarget,
HtlcConfTarget: defaultHtlcConfTarget,
FeeLimit: defaultFeePortion(),
}
)
const InfiniteDuration = (24 * 31 * 12 * 100) * time.Hour
// Parameters is a set of parameters provided by the user which guide
// how we assess liquidity.
type Parameters struct {
// Autoloop enables automatic dispatch of swaps.
Autoloop bool
// DestAddr is the address to be used for sweeping the on-chain HTLC
// that is related with a loop out.
DestAddr btcutil.Address
// An alternative destination address source for the swap. This field
// represents the name of the account in the backing lnd instance.
// Refer to lnd's wallet import functions for reference.
Account string
// The address type of the account specified in the account field.
AccountAddrType walletrpc.AddressType
// AutoFeeBudget is the total amount we allow to be spent on
// automatically dispatched swaps. Once this budget has been used, we
// will stop dispatching swaps until the budget is refreshed.
AutoFeeBudget btcutil.Amount
// AutoFeeRefreshPeriod is the amount of time that must pass before the
// auto fee budget is refreshed.
AutoFeeRefreshPeriod time.Duration
// AutoloopBudgetLastRefresh is the last time at which we refreshed
// our budget.
AutoloopBudgetLastRefresh time.Time
// MaxAutoInFlight is the maximum number of in-flight automatically
// dispatched swaps we allow.
MaxAutoInFlight int
// FailureBackOff is the amount of time that we require passes after a
// channel has been part of a failed loop out swap before we suggest
// using it again.
// TODO(carla): add exponential backoff
FailureBackOff time.Duration
// SweepConfTarget is the number of blocks we aim to confirm our sweep
// transaction in. This value affects the on chain fees we will pay.
SweepConfTarget int32
// HtlcConfTarget is the confirmation target that we use for publishing
// loop in swap htlcs on chain.
HtlcConfTarget int32
// FeeLimit controls the fee limit we place on swaps.
FeeLimit FeeLimit
// ClientRestrictions are the restrictions placed on swap size by the
// client.
ClientRestrictions Restrictions
// ChannelRules maps a short channel ID to a rule that describes how we
// would like liquidity to be managed. These rules and PeerRules are
// exclusively set to prevent overlap between peer and channel rules.
ChannelRules map[lnwire.ShortChannelID]*SwapRule
// PeerRules maps a peer's pubkey to a rule that applies to all the
// channels that we have with the peer collectively. These rules and
// ChannelRules are exclusively set to prevent overlap between peer
// and channel rules map to avoid ambiguity.
PeerRules map[route.Vertex]*SwapRule
// CustomPaymentCheckInterval is an optional custom interval to use when
// checking an autoloop loop out payments' payment status.
CustomPaymentCheckInterval time.Duration
// EasyAutoloop is a boolean that indicates whether we should use the
// easy autoloop feature.
EasyAutoloop bool
// EasyAutoloopTarget is the target amount of liquidity that we want to
// maintain in our channels.
EasyAutoloopTarget btcutil.Amount
}
// String returns the string representation of our parameters.
func (p Parameters) String() string {
ruleList := make([]string, 0, len(p.ChannelRules)+len(p.PeerRules))
for channel, rule := range p.ChannelRules {
ruleList = append(
ruleList, fmt.Sprintf("Channel: %v: %v", channel, rule),
)
}
for peer, rule := range p.PeerRules {
ruleList = append(
ruleList, fmt.Sprintf("Peer: %v: %v", peer, rule),
)
}
return fmt.Sprintf("rules: %v, failure backoff: %v, sweep "+
"sweep conf target: %v, htlc conf target: %v,fees: %v, "+
"auto budget: %v, budget refresh: %v, max auto in flight: %v, "+
"minimum swap size=%v, maximum swap size=%v",
strings.Join(ruleList, ","), p.FailureBackOff,
p.SweepConfTarget, p.HtlcConfTarget, p.FeeLimit,
p.AutoFeeBudget, p.AutoFeeRefreshPeriod, p.MaxAutoInFlight,
p.ClientRestrictions.Minimum, p.ClientRestrictions.Maximum)
}
// haveRules returns a boolean indicating whether we have any rules configured.
func (p Parameters) haveRules() bool {
if len(p.ChannelRules) != 0 {
return true
}
if len(p.PeerRules) != 0 {
return true
}
return false
}
// validate checks whether a set of parameters is valid. Our set of currently
// open channels are required to check that there is no overlap between the
// rules set on a per-peer level, and those set for specific channels. We can't
// allow both, because then we're trying to cater for two separate liquidity
// goals on the same channel. Since we use short channel ID, we don't need to
// worry about pending channels (users would need to work very hard to get the
// short channel ID for a pending channel). Likewise, we don't care about closed
// channels, since there is no action that may occur on them, and we want to
// allow peer-level rules to be set once a channel which had a specific rule
// has been closed. It takes the minimum confirmations we allow for sweep
// confirmation target as a parameter.
// TODO(carla): prune channels that have been closed from rules.
func (p Parameters) validate(minConfs int32, openChans []lndclient.ChannelInfo,
server *Restrictions) error {
// First, we check that the rules on a per peer and per channel do not
// overlap, since this could lead to contractions.
for _, channel := range openChans {
// If we don't have a rule for the peer, there's no way we have
// an overlap between this peer and the channel.
_, ok := p.PeerRules[channel.PubKeyBytes]
if !ok {
continue
}
shortID := lnwire.NewShortChanIDFromInt(channel.ChannelID)
_, ok = p.ChannelRules[shortID]
if ok {
log.Debugf("Rules for peer: %v and its channel: %v "+
"can't both be set", channel.PubKeyBytes, shortID)
return ErrExclusiveRules
}
}
for channel, rule := range p.ChannelRules {
if channel.ToUint64() == 0 {
return ErrZeroChannelID
}
if rule.Type == swap.TypeIn {
return errors.New("channel level rules not supported for " +
"loop in swaps, only peer-level rules allowed")
}
if err := rule.validate(); err != nil {
return fmt.Errorf("channel: %v has invalid rule: %v",
channel.ToUint64(), err)
}
}
for peer, rule := range p.PeerRules {
if err := rule.validate(); err != nil {
return fmt.Errorf("peer: %v has invalid rule: %v",
peer, err)
}
}
// Check that our confirmation target is above our required minimum.
if p.SweepConfTarget < minConfs {
return fmt.Errorf("confirmation target must be at least: %v",
minConfs)
}
if p.HtlcConfTarget < 1 {
return fmt.Errorf("htlc confirmation target must be > 0")
}
if err := p.FeeLimit.validate(); err != nil {
return err
}
if p.AutoFeeBudget < 0 {
return ErrNegativeBudget
}
if p.MaxAutoInFlight <= 0 {
return ErrZeroInFlight
}
// Destination address and account cannot be set at the same time.
if p.DestAddr != nil && len(p.DestAddr.String()) > 0 &&
len(p.Account) > 0 {
return ErrAmbiguousDestAddr
}
// If an account is specified the respective address type must be
// specified as well, or both must be unset.
if len(p.Account) == 0 !=
(p.AccountAddrType == walletrpc.AddressType_UNKNOWN) {
return ErrAccountAndAddrType
}
err := validateRestrictions(server, &p.ClientRestrictions)
if err != nil {
return err
}
return nil
}
// validateRestrictions checks that client restrictions fall within the server's
// restrictions.
func validateRestrictions(server, client *Restrictions) error {
zeroMin := client.Minimum == 0
zeroMax := client.Maximum == 0
if zeroMin && zeroMax {
return nil
}
// If we have a non-zero maximum, we need to ensure it is greater than
// our minimum (which is fine if min is zero), and does not exceed the
// server's maximum.
if !zeroMax {
if client.Minimum > client.Maximum {
return ErrMinimumExceedsMaximumAmt
}
if client.Maximum > server.Maximum {
return ErrMaxExceedsServer
}
}
if zeroMin {
return nil
}
// If the client set a minimum, ensure it is at least equal to the
// server's limit.
if client.Minimum < server.Minimum {
return ErrMinLessThanServer
}
return nil
}
// cloneParameters creates a deep clone of a parameters struct so that callers
// cannot mutate our parameters. Although our parameters struct itself is not
// a reference, we still need to clone the contents of maps.
func cloneParameters(params Parameters) Parameters {
paramCopy := params
paramCopy.ChannelRules = make(
map[lnwire.ShortChannelID]*SwapRule,
len(params.ChannelRules),
)
for channel, rule := range params.ChannelRules {
ruleCopy := *rule
paramCopy.ChannelRules[channel] = &ruleCopy
}
paramCopy.PeerRules = make(
map[route.Vertex]*SwapRule,
len(params.PeerRules),
)
for peer, rule := range params.PeerRules {
ruleCopy := *rule
paramCopy.PeerRules[peer] = &ruleCopy
}
return paramCopy
}
// rpcToFee converts the values provided over rpc to a fee limit interface,
// failing if an inconsistent set of fields are set.
func rpcToFee(req *clientrpc.LiquidityParameters) (FeeLimit, error) {
// Check which fee limit type we have values set for. If any fields
// relevant to our individual categories are set, we count that type
// as set.
isFeePPM := req.FeePpm != 0
isCategories := req.MaxSwapFeePpm != 0 || req.MaxRoutingFeePpm != 0 ||
req.MaxPrepayRoutingFeePpm != 0 || req.MaxMinerFeeSat != 0 ||
req.MaxPrepaySat != 0 || req.SweepFeeRateSatPerVbyte != 0
switch {
case isFeePPM && isCategories:
return nil, errors.New("set either fee ppm, or individual " +
"fee categories")
case isFeePPM:
return NewFeePortion(req.FeePpm), nil
case isCategories:
satPerKVbyte := chainfee.SatPerKVByte(
req.SweepFeeRateSatPerVbyte * 1000,
)
return NewFeeCategoryLimit(
req.MaxSwapFeePpm,
req.MaxRoutingFeePpm,
req.MaxPrepayRoutingFeePpm,
btcutil.Amount(req.MaxMinerFeeSat),
btcutil.Amount(req.MaxPrepaySat),
satPerKVbyte.FeePerKWeight(),
), nil
default:
return nil, errors.New("no fee categories set")
}
}
// rpcToRule switches on rpc rule type to convert to our rule interface.
func rpcToRule(rule *clientrpc.LiquidityRule) (*SwapRule, error) {
swapType := swap.TypeOut
if rule.SwapType == clientrpc.SwapType_LOOP_IN {
swapType = swap.TypeIn
}
switch rule.Type {
case clientrpc.LiquidityRuleType_UNKNOWN:
return nil, fmt.Errorf("rule type field must be set")
case clientrpc.LiquidityRuleType_THRESHOLD:
return &SwapRule{
ThresholdRule: NewThresholdRule(
int(rule.IncomingThreshold),
int(rule.OutgoingThreshold),
),
Type: swapType,
}, nil
default:
return nil, fmt.Errorf("unknown rule: %T", rule)
}
}
// rpcToParameters takes a `LiquidityParameters` and creates a `Parameters`
// from it.
func RpcToParameters(req *clientrpc.LiquidityParameters) (*Parameters,
error) {
feeLimit, err := rpcToFee(req)
if err != nil {
return nil, err
}
var destaddr btcutil.Address
if len(req.AutoloopDestAddress) != 0 {
if req.AutoloopDestAddress == "default" {
destaddr = nil
} else {
destaddr, err = btcutil.DecodeAddress(
req.AutoloopDestAddress, nil,
)
if err != nil {
return nil, err
}
}
}
addrType := walletrpc.AddressType_UNKNOWN
if req.AccountAddrType == clientrpc.AddressType_TAPROOT_PUBKEY {
addrType = walletrpc.AddressType_TAPROOT_PUBKEY
}
params := &Parameters{
FeeLimit: feeLimit,
SweepConfTarget: req.SweepConfTarget,
FailureBackOff: time.Duration(req.FailureBackoffSec) *
time.Second,
Autoloop: req.Autoloop,
AutoloopBudgetLastRefresh: time.Unix(
int64(req.AutoloopBudgetLastRefresh), 0,
),
DestAddr: destaddr,
Account: req.Account,
AccountAddrType: addrType,
AutoFeeBudget: btcutil.Amount(req.AutoloopBudgetSat),
MaxAutoInFlight: int(req.AutoMaxInFlight),
ChannelRules: make(
map[lnwire.ShortChannelID]*SwapRule,
),
PeerRules: make(
map[route.Vertex]*SwapRule,
),
ClientRestrictions: Restrictions{
Minimum: btcutil.Amount(req.MinSwapAmount),
Maximum: btcutil.Amount(req.MaxSwapAmount),
},
HtlcConfTarget: req.HtlcConfTarget,
EasyAutoloop: req.EasyAutoloop,
EasyAutoloopTarget: btcutil.Amount(req.EasyAutoloopLocalTargetSat),
}
if req.AutoloopBudgetRefreshPeriodSec != 0 {
params.AutoFeeRefreshPeriod =
time.Duration(req.AutoloopBudgetRefreshPeriodSec) *
time.Second
}
// If an old-style budget was written to storage then express it by
// using the new auto budget parameters. If the newly added parameters
// have the 0 default value, but a budget was defined that means the
// client is using the old style budget parameters.
if req.AutoloopBudgetRefreshPeriodSec == 0 &&
req.AutoloopBudgetSat != 0 {
params.AutoFeeRefreshPeriod = InfiniteDuration
params.AutoloopBudgetLastRefresh = time.Unix(
int64(req.AutoloopBudgetStartSec), 0)
}
for _, rule := range req.Rules {
peerRule := rule.Pubkey != nil
chanRule := rule.ChannelId != 0
liquidityRule, err := rpcToRule(rule)
if err != nil {
return nil, err
}
switch {
case peerRule && chanRule:
return nil, fmt.Errorf("cannot set channel: %v and "+
"peer: %v fields in rule", rule.ChannelId,
rule.Pubkey)
case peerRule:
pubkey, err := route.NewVertexFromBytes(rule.Pubkey)
if err != nil {
return nil, err
}
if _, ok := params.PeerRules[pubkey]; ok {
return nil, fmt.Errorf("multiple rules set "+
"for peer: %v", pubkey)
}
params.PeerRules[pubkey] = liquidityRule
case chanRule:
shortID := lnwire.NewShortChanIDFromInt(rule.ChannelId)
if _, ok := params.ChannelRules[shortID]; ok {
return nil, fmt.Errorf("multiple rules set "+
"for channel: %v", shortID)
}
params.ChannelRules[shortID] = liquidityRule
default:
return nil, errors.New("please set channel id or " +
"pubkey for rule")
}
}
return params, nil
}
// ParametersToRpc takes a `Parameters` and creates a `LiquidityParameters`
// from it.
func ParametersToRpc(cfg Parameters) (*clientrpc.LiquidityParameters,
error) {
totalRules := len(cfg.ChannelRules) + len(cfg.PeerRules)
var destaddr string
if cfg.DestAddr != nil {
destaddr = cfg.DestAddr.String()
}
var addrType clientrpc.AddressType
switch cfg.AccountAddrType {
case walletrpc.AddressType_TAPROOT_PUBKEY:
addrType = clientrpc.AddressType_TAPROOT_PUBKEY
default:
addrType = clientrpc.AddressType_ADDRESS_TYPE_UNKNOWN
}
rpcCfg := &clientrpc.LiquidityParameters{
SweepConfTarget: cfg.SweepConfTarget,
FailureBackoffSec: uint64(cfg.FailureBackOff.Seconds()),
Autoloop: cfg.Autoloop,
AutoloopBudgetSat: uint64(cfg.AutoFeeBudget),
AutoloopBudgetRefreshPeriodSec: uint64(
cfg.AutoFeeRefreshPeriod.Seconds(),
),
AutoloopBudgetLastRefresh: uint64(
cfg.AutoloopBudgetLastRefresh.Unix(),
),
AutoMaxInFlight: uint64(cfg.MaxAutoInFlight),
AutoloopDestAddress: destaddr,
Rules: make(
[]*clientrpc.LiquidityRule, 0, totalRules,
),
MinSwapAmount: uint64(
cfg.ClientRestrictions.Minimum,
),
MaxSwapAmount: uint64(
cfg.ClientRestrictions.Maximum,
),
HtlcConfTarget: cfg.HtlcConfTarget,
EasyAutoloop: cfg.EasyAutoloop,
EasyAutoloopLocalTargetSat: uint64(cfg.EasyAutoloopTarget),
Account: cfg.Account,
AccountAddrType: addrType,
}
switch f := cfg.FeeLimit.(type) {
case *FeeCategoryLimit:
satPerByte := f.SweepFeeRateLimit.FeePerKVByte() / 1000
rpcCfg.SweepFeeRateSatPerVbyte = uint64(satPerByte)
rpcCfg.MaxMinerFeeSat = uint64(f.MaximumMinerFee)
rpcCfg.MaxSwapFeePpm = f.MaximumSwapFeePPM
rpcCfg.MaxRoutingFeePpm = f.MaximumRoutingFeePPM
rpcCfg.MaxPrepayRoutingFeePpm = f.MaximumPrepayRoutingFeePPM
rpcCfg.MaxPrepaySat = uint64(f.MaximumPrepay)
case *FeePortion:
rpcCfg.FeePpm = f.PartsPerMillion
default:
return nil, fmt.Errorf("unknown fee limit: %T", cfg.FeeLimit)
}
for channel, rule := range cfg.ChannelRules {
rpcRule := newRPCRule(channel.ToUint64(), nil, rule)
rpcCfg.Rules = append(rpcCfg.Rules, rpcRule)
}
for peer, rule := range cfg.PeerRules {
peer := peer
rpcRule := newRPCRule(0, peer[:], rule)
rpcCfg.Rules = append(rpcCfg.Rules, rpcRule)
}
return rpcCfg, nil
}
// newRPCRule is a helper function that creates a `LiquidityRule` based on the
// provided `SwapRule` for the given channelID or peer.
func newRPCRule(channelID uint64, peer []byte,
rule *SwapRule) *clientrpc.LiquidityRule {
rpcRule := &clientrpc.LiquidityRule{
ChannelId: channelID,
Pubkey: peer,
Type: clientrpc.LiquidityRuleType_THRESHOLD,
IncomingThreshold: uint32(rule.MinimumIncoming),
OutgoingThreshold: uint32(rule.MinimumOutgoing),
SwapType: clientrpc.SwapType_LOOP_OUT,
}
if rule.Type == swap.TypeIn {
rpcRule.SwapType = clientrpc.SwapType_LOOP_IN
}
return rpcRule
}