2
0
mirror of https://github.com/lightninglabs/loop synced 2024-11-04 06:00:21 +00:00
loop/liquidity/liquidity.go

1163 lines
36 KiB
Go

// Package liquidity is responsible for monitoring our node's liquidity. It
// allows setting of a liquidity rule which describes the desired liquidity
// balance on a per-channel basis.
//
// Swap suggestions are limited to channels that are not currently being used
// for a pending swap. If we are currently processing an unrestricted swap (ie,
// a loop out with no outgoing channel targets set or a loop in with no last
// hop set), we will not suggest any swaps because these swaps will shift the
// balances of our channels in ways we can't predict.
//
// Fee restrictions are placed on swap suggestions to ensure that we only
// suggest swaps that fit the configured fee preferences.
// - Sweep Fee Rate Limit: the maximum sat/vByte fee estimate for our sweep
// transaction to confirm within our configured number of confirmations
// that we will suggest swaps for.
// - Maximum Swap Fee PPM: the maximum server fee, expressed as parts per
// million of the full swap amount
// - Maximum Routing Fee PPM: the maximum off-chain routing fees for the swap
// invoice, expressed as parts per million of the swap amount.
// - Maximum Prepay Routing Fee PPM: the maximum off-chain routing fees for the
// swap prepayment, expressed as parts per million of the prepay amount.
// - Maximum Prepay: the maximum now-show fee, expressed in satoshis. This
// amount is only payable in the case where the swap server broadcasts a htlc
// and the client fails to sweep the preimage.
// - Maximum miner fee: the maximum miner fee we are willing to pay to sweep the
// on chain htlc. Note that the client will use current fee estimates to
// sweep, so this value acts more as a sanity check in the case of a large fee
// spike.
//
// The maximum fee per-swap is calculated as follows:
// (swap amount * serverPPM/1e6) + miner fee + (swap amount * routingPPM/1e6)
// + (prepay amount * prepayPPM/1e6).
package liquidity
import (
"context"
"errors"
"fmt"
"sort"
"strings"
"sync"
"time"
"github.com/btcsuite/btcutil"
"github.com/lightninglabs/lndclient"
"github.com/lightninglabs/loop"
"github.com/lightninglabs/loop/labels"
"github.com/lightninglabs/loop/loopdb"
"github.com/lightninglabs/loop/swap"
"github.com/lightningnetwork/lnd/clock"
"github.com/lightningnetwork/lnd/funding"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing/route"
"github.com/lightningnetwork/lnd/ticker"
)
const (
// defaultFailureBackoff is the default amount of time we backoff if
// a channel is part of a temporarily failed swap.
defaultFailureBackoff = time.Hour * 24
// defaultConfTarget is the default sweep target we use for loop outs.
// We get our inbound liquidity quickly using preimage push, so we can
// use a long conf target without worrying about ux impact.
defaultConfTarget = 100
// FeeBase is the base that we use to express fees.
FeeBase = 1e6
// defaultMaxInFlight is the default number of in-flight automatically
// dispatched swaps we allow. Note that this does not enable automated
// swaps itself (because we want non-zero values to be expressed in
// suggestions as a dry-run).
defaultMaxInFlight = 1
// DefaultAutoloopTicker is the default amount of time between automated
// swap checks.
DefaultAutoloopTicker = time.Minute * 10
// autoloopSwapInitiator is the value we send in the initiator field of
// a swap request when issuing an automatic swap.
autoloopSwapInitiator = "autoloop"
// We use a static fee rate to estimate our sweep fee, because we
// can't realistically estimate what our fee estimate will be by the
// time we reach timeout. We set this to a high estimate so that we can
// account for worst-case fees, (1250 * 4 / 1000) = 50 sat/byte.
defaultLoopInSweepFee = chainfee.SatPerKWeight(1250)
)
var (
// defaultHtlcConfTarget is the default confirmation target we use for
// loop in swap htlcs, set to the same default at the client.
defaultHtlcConfTarget = loop.DefaultHtlcConfTarget
// defaultBudget is the default autoloop budget we set. This budget will
// only be used for automatically dispatched swaps if autoloop is
// explicitly enabled, so we are happy to set a non-zero value here. The
// amount chosen simply uses the current defaults to provide budget for
// a single swap. We don't have a swap amount so we just use our max
// funding amount.
defaultBudget = ppmToSat(funding.MaxBtcFundingAmount, defaultFeePPM)
// defaultParameters contains the default parameters that we start our
// liquidity manger with.
defaultParameters = Parameters{
AutoFeeBudget: defaultBudget,
MaxAutoInFlight: defaultMaxInFlight,
ChannelRules: make(map[lnwire.ShortChannelID]*SwapRule),
PeerRules: make(map[route.Vertex]*SwapRule),
FailureBackOff: defaultFailureBackoff,
SweepConfTarget: defaultConfTarget,
HtlcConfTarget: defaultHtlcConfTarget,
FeeLimit: defaultFeePortion(),
}
// ErrZeroChannelID is returned if we get a rule for a 0 channel ID.
ErrZeroChannelID = fmt.Errorf("zero channel ID not allowed")
// ErrNegativeBudget is returned if a negative swap budget is set.
ErrNegativeBudget = errors.New("swap budget must be >= 0")
// ErrZeroInFlight is returned is a zero in flight swaps value is set.
ErrZeroInFlight = errors.New("max in flight swaps must be >=0")
// ErrMinimumExceedsMaximumAmt is returned when the minimum configured
// swap amount is more than the maximum.
ErrMinimumExceedsMaximumAmt = errors.New("minimum swap amount " +
"exceeds maximum")
// ErrMaxExceedsServer is returned if the maximum swap amount set is
// more than the server offers.
ErrMaxExceedsServer = errors.New("maximum swap amount is more than " +
"server maximum")
// ErrMinLessThanServer is returned if the minimum swap amount set is
// less than the server minimum.
ErrMinLessThanServer = errors.New("minimum swap amount is less than " +
"server minimum")
// ErrNoRules is returned when no rules are set for swap suggestions.
ErrNoRules = errors.New("no rules set for autoloop")
// ErrExclusiveRules is returned when a set of rules that may not be
// set together are specified.
ErrExclusiveRules = errors.New("channel and peer rules must be " +
"exclusive")
)
// Config contains the external functionality required to run the
// liquidity manager.
type Config struct {
// AutoloopTicker determines how often we should check whether we want
// to dispatch an automated swap. We use a force ticker so that we can
// trigger autoloop in itests.
AutoloopTicker *ticker.Force
// Restrictions returns the restrictions that the server applies to
// swaps.
Restrictions func(ctx context.Context, swapType swap.Type) (
*Restrictions, error)
// Lnd provides us with access to lnd's rpc servers.
Lnd *lndclient.LndServices
// ListLoopOut returns all of the loop our swaps stored on disk.
ListLoopOut func() ([]*loopdb.LoopOut, error)
// ListLoopIn returns all of the loop in swaps stored on disk.
ListLoopIn func() ([]*loopdb.LoopIn, error)
// LoopOutQuote gets swap fee, estimated miner fee and prepay amount for
// a loop out swap.
LoopOutQuote func(ctx context.Context,
request *loop.LoopOutQuoteRequest) (*loop.LoopOutQuote, error)
// LoopInQuote provides a quote for a loop in swap.
LoopInQuote func(ctx context.Context,
request *loop.LoopInQuoteRequest) (*loop.LoopInQuote, error)
// LoopOut dispatches a loop out.
LoopOut func(ctx context.Context, request *loop.OutRequest) (
*loop.LoopOutSwapInfo, error)
// Clock allows easy mocking of time in unit tests.
Clock clock.Clock
// MinimumConfirmations is the minimum number of confirmations we allow
// setting for sweep target.
MinimumConfirmations int32
}
// Parameters is a set of parameters provided by the user which guide
// how we assess liquidity.
type Parameters struct {
// Autoloop enables automatic dispatch of swaps.
Autoloop bool
// AutoFeeBudget is the total amount we allow to be spent on
// automatically dispatched swaps. Once this budget has been used, we
// will stop dispatching swaps until the budget is increased or the
// start date is moved.
AutoFeeBudget btcutil.Amount
// AutoFeeStartDate is the date from which we will include automatically
// dispatched swaps in our current budget, inclusive.
AutoFeeStartDate time.Time
// MaxAutoInFlight is the maximum number of in-flight automatically
// dispatched swaps we allow.
MaxAutoInFlight int
// FailureBackOff is the amount of time that we require passes after a
// channel has been part of a failed loop out swap before we suggest
// using it again.
// TODO(carla): add exponential backoff
FailureBackOff time.Duration
// SweepConfTarget is the number of blocks we aim to confirm our sweep
// transaction in. This value affects the on chain fees we will pay.
SweepConfTarget int32
// HtlcConfTarget is the confirmation target that we use for publishing
// loop in swap htlcs on chain.
HtlcConfTarget int32
// FeeLimit controls the fee limit we place on swaps.
FeeLimit FeeLimit
// ClientRestrictions are the restrictions placed on swap size by the
// client.
ClientRestrictions Restrictions
// ChannelRules maps a short channel ID to a rule that describes how we
// would like liquidity to be managed. These rules and PeerRules are
// exclusively set to prevent overlap between peer and channel rules.
ChannelRules map[lnwire.ShortChannelID]*SwapRule
// PeerRules maps a peer's pubkey to a rule that applies to all the
// channels that we have with the peer collectively. These rules and
// ChannelRules are exclusively set to prevent overlap between peer
// and channel rules map to avoid ambiguity.
PeerRules map[route.Vertex]*SwapRule
}
// String returns the string representation of our parameters.
func (p Parameters) String() string {
ruleList := make([]string, 0, len(p.ChannelRules)+len(p.PeerRules))
for channel, rule := range p.ChannelRules {
ruleList = append(
ruleList, fmt.Sprintf("Channel: %v: %v", channel, rule),
)
}
for peer, rule := range p.PeerRules {
ruleList = append(
ruleList, fmt.Sprintf("Peer: %v: %v", peer, rule),
)
}
return fmt.Sprintf("rules: %v, failure backoff: %v, sweep "+
"sweep conf target: %v, htlc conf target: %v,fees: %v, "+
"auto budget: %v, budget start: %v, max auto in flight: %v, "+
"minimum swap size=%v, maximum swap size=%v",
strings.Join(ruleList, ","), p.FailureBackOff,
p.SweepConfTarget, p.HtlcConfTarget, p.FeeLimit,
p.AutoFeeBudget, p.AutoFeeStartDate, p.MaxAutoInFlight,
p.ClientRestrictions.Minimum, p.ClientRestrictions.Maximum)
}
// haveRules returns a boolean indicating whether we have any rules configured.
func (p Parameters) haveRules() bool {
if len(p.ChannelRules) != 0 {
return true
}
if len(p.PeerRules) != 0 {
return true
}
return false
}
// validate checks whether a set of parameters is valid. Our set of currently
// open channels are required to check that there is no overlap between the
// rules set on a per-peer level, and those set for specific channels. We can't
// allow both, because then we're trying to cater for two separate liquidity
// goals on the same channel. Since we use short channel ID, we don't need to
// worry about pending channels (users would need to work very hard to get the
// short channel ID for a pending channel). Likewise, we don't care about closed
// channels, since there is no action that may occur on them, and we want to
// allow peer-level rules to be set once a channel which had a specific rule
// has been closed. It takes the minimum confirmations we allow for sweep
// confirmation target as a parameter.
// TODO(carla): prune channels that have been closed from rules.
func (p Parameters) validate(minConfs int32, openChans []lndclient.ChannelInfo,
server *Restrictions) error {
// First, we check that the rules on a per peer and per channel do not
// overlap, since this could lead to contractions.
for _, channel := range openChans {
// If we don't have a rule for the peer, there's no way we have
// an overlap between this peer and the channel.
_, ok := p.PeerRules[channel.PubKeyBytes]
if !ok {
continue
}
shortID := lnwire.NewShortChanIDFromInt(channel.ChannelID)
_, ok = p.ChannelRules[shortID]
if ok {
log.Debugf("Rules for peer: %v and its channel: %v "+
"can't both be set", channel.PubKeyBytes, shortID)
return ErrExclusiveRules
}
}
for channel, rule := range p.ChannelRules {
if channel.ToUint64() == 0 {
return ErrZeroChannelID
}
if err := rule.validate(); err != nil {
return fmt.Errorf("channel: %v has invalid rule: %v",
channel.ToUint64(), err)
}
}
for peer, rule := range p.PeerRules {
if err := rule.validate(); err != nil {
return fmt.Errorf("peer: %v has invalid rule: %v",
peer, err)
}
}
// Check that our confirmation target is above our required minimum.
if p.SweepConfTarget < minConfs {
return fmt.Errorf("confirmation target must be at least: %v",
minConfs)
}
if p.HtlcConfTarget < 1 {
return fmt.Errorf("htlc confirmation target must be > 0")
}
if err := p.FeeLimit.validate(); err != nil {
return err
}
if p.AutoFeeBudget < 0 {
return ErrNegativeBudget
}
if p.MaxAutoInFlight <= 0 {
return ErrZeroInFlight
}
err := validateRestrictions(server, &p.ClientRestrictions)
if err != nil {
return err
}
return nil
}
// validateRestrictions checks that client restrictions fall within the server's
// restrictions.
func validateRestrictions(server, client *Restrictions) error {
zeroMin := client.Minimum == 0
zeroMax := client.Maximum == 0
if zeroMin && zeroMax {
return nil
}
// If we have a non-zero maximum, we need to ensure it is greater than
// our minimum (which is fine if min is zero), and does not exceed the
// server's maximum.
if !zeroMax {
if client.Minimum > client.Maximum {
return ErrMinimumExceedsMaximumAmt
}
if client.Maximum > server.Maximum {
return ErrMaxExceedsServer
}
}
if zeroMin {
return nil
}
// If the client set a minimum, ensure it is at least equal to the
// server's limit.
if client.Minimum < server.Minimum {
return ErrMinLessThanServer
}
return nil
}
// Manager contains a set of desired liquidity rules for our channel
// balances.
type Manager struct {
// cfg contains the external functionality we require to determine our
// current liquidity balance.
cfg *Config
// params is the set of parameters we are currently using. These may be
// updated at runtime.
params Parameters
// paramsLock is a lock for our current set of parameters.
paramsLock sync.Mutex
}
// Run periodically checks whether we should automatically dispatch a loop out.
// We run this loop even if automated swaps are not currently enabled rather
// than managing starting and stopping the ticker as our parameters are updated.
func (m *Manager) Run(ctx context.Context) error {
m.cfg.AutoloopTicker.Resume()
defer m.cfg.AutoloopTicker.Stop()
for {
select {
case <-m.cfg.AutoloopTicker.Ticks():
err := m.autoloop(ctx)
switch err {
case ErrNoRules:
log.Debugf("No rules configured for autoloop")
case nil:
default:
log.Errorf("autoloop failed: %v", err)
}
case <-ctx.Done():
return ctx.Err()
}
}
}
// NewManager creates a liquidity manager which has no rules set.
func NewManager(cfg *Config) *Manager {
return &Manager{
cfg: cfg,
params: defaultParameters,
}
}
// GetParameters returns a copy of our current parameters.
func (m *Manager) GetParameters() Parameters {
m.paramsLock.Lock()
defer m.paramsLock.Unlock()
return cloneParameters(m.params)
}
// SetParameters updates our current set of parameters if the new parameters
// provided are valid.
func (m *Manager) SetParameters(ctx context.Context, params Parameters) error {
restrictions, err := m.cfg.Restrictions(ctx, swap.TypeOut)
if err != nil {
return err
}
channels, err := m.cfg.Lnd.Client.ListChannels(ctx, false, false)
if err != nil {
return err
}
err = params.validate(m.cfg.MinimumConfirmations, channels, restrictions)
if err != nil {
return err
}
m.paramsLock.Lock()
defer m.paramsLock.Unlock()
m.params = cloneParameters(params)
return nil
}
// cloneParameters creates a deep clone of a parameters struct so that callers
// cannot mutate our parameters. Although our parameters struct itself is not
// a reference, we still need to clone the contents of maps.
func cloneParameters(params Parameters) Parameters {
paramCopy := params
paramCopy.ChannelRules = make(
map[lnwire.ShortChannelID]*SwapRule,
len(params.ChannelRules),
)
for channel, rule := range params.ChannelRules {
ruleCopy := *rule
paramCopy.ChannelRules[channel] = &ruleCopy
}
paramCopy.PeerRules = make(
map[route.Vertex]*SwapRule,
len(params.PeerRules),
)
for peer, rule := range params.PeerRules {
ruleCopy := *rule
paramCopy.PeerRules[peer] = &ruleCopy
}
return paramCopy
}
// autoloop gets a set of suggested swaps and dispatches them automatically if
// we have automated looping enabled.
func (m *Manager) autoloop(ctx context.Context) error {
suggestion, err := m.SuggestSwaps(ctx, true)
if err != nil {
return err
}
for _, swap := range suggestion.OutSwaps {
// If we don't actually have dispatch of swaps enabled, log
// suggestions.
if !m.params.Autoloop {
log.Debugf("recommended autoloop: %v sats over "+
"%v", swap.Amount, swap.OutgoingChanSet)
continue
}
// Create a copy of our range var so that we can reference it.
swap := swap
loopOut, err := m.cfg.LoopOut(ctx, &swap)
if err != nil {
return err
}
log.Infof("loop out automatically dispatched: hash: %v, "+
"address: %v", loopOut.SwapHash,
loopOut.HtlcAddressP2WSH)
}
return nil
}
// ForceAutoLoop force-ticks our auto-out ticker.
func (m *Manager) ForceAutoLoop(ctx context.Context) error {
select {
case m.cfg.AutoloopTicker.Force <- m.cfg.Clock.Now():
return nil
case <-ctx.Done():
return ctx.Err()
}
}
// Suggestions provides a set of suggested swaps, and the set of channels that
// were excluded from consideration.
type Suggestions struct {
// OutSwaps is the set of loop out swaps that we suggest executing.
OutSwaps []loop.OutRequest
// DisqualifiedChans maps the set of channels that we do not recommend
// swaps on to the reason that we did not recommend a swap.
DisqualifiedChans map[lnwire.ShortChannelID]Reason
// Disqualified peers maps the set of peers that we do not recommend
// swaps for to the reason that they were excluded.
DisqualifiedPeers map[route.Vertex]Reason
}
func newSuggestions() *Suggestions {
return &Suggestions{
DisqualifiedChans: make(map[lnwire.ShortChannelID]Reason),
DisqualifiedPeers: make(map[route.Vertex]Reason),
}
}
func (s *Suggestions) addSwap(swap swapSuggestion) error {
out, ok := swap.(*loopOutSwapSuggestion)
if !ok {
return fmt.Errorf("unexpected swap type: %T", swap)
}
s.OutSwaps = append(s.OutSwaps, out.OutRequest)
return nil
}
// singleReasonSuggestion is a helper function which returns a set of
// suggestions where all of our rules are disqualified due to a reason that
// applies to all of them (such as being out of budget).
func (m *Manager) singleReasonSuggestion(reason Reason) *Suggestions {
resp := newSuggestions()
for id := range m.params.ChannelRules {
resp.DisqualifiedChans[id] = reason
}
for peer := range m.params.PeerRules {
resp.DisqualifiedPeers[peer] = reason
}
return resp
}
// SuggestSwaps returns a set of swap suggestions based on our current liquidity
// balance for the set of rules configured for the manager, failing if there are
// no rules set. It takes an autoloop boolean that indicates whether the
// suggestions are being used for our internal autolooper. This boolean is used
// to determine the information we add to our swap suggestion and whether we
// return any suggestions.
func (m *Manager) SuggestSwaps(ctx context.Context, autoloop bool) (
*Suggestions, error) {
m.paramsLock.Lock()
defer m.paramsLock.Unlock()
// If we have no rules set, exit early to avoid unnecessary calls to
// lnd and the server.
if !m.params.haveRules() {
return nil, ErrNoRules
}
// If our start date is in the future, we interpret this as meaning that
// we should start using our budget at this date. This means that we
// have no budget for the present, so we just return.
if m.params.AutoFeeStartDate.After(m.cfg.Clock.Now()) {
log.Debugf("autoloop fee budget start time: %v is in "+
"the future", m.params.AutoFeeStartDate)
return m.singleReasonSuggestion(ReasonBudgetNotStarted), nil
}
// Get restrictions placed on swaps by the server.
outRestrictions, err := m.getSwapRestrictions(ctx, swap.TypeOut)
if err != nil {
return nil, err
}
// List our current set of swaps so that we can determine which channels
// are already being utilized by swaps. Note that these calls may race
// with manual initiation of swaps.
loopOut, err := m.cfg.ListLoopOut()
if err != nil {
return nil, err
}
loopIn, err := m.cfg.ListLoopIn()
if err != nil {
return nil, err
}
// Get a summary of our existing swaps so that we can check our autoloop
// budget.
summary, err := m.checkExistingAutoLoops(ctx, loopOut, loopIn)
if err != nil {
return nil, err
}
if summary.totalFees() >= m.params.AutoFeeBudget {
log.Debugf("autoloop fee budget: %v exhausted, %v spent on "+
"completed swaps, %v reserved for ongoing swaps "+
"(upper limit)",
m.params.AutoFeeBudget, summary.spentFees,
summary.pendingFees)
return m.singleReasonSuggestion(ReasonBudgetElapsed), nil
}
// If we have already reached our total allowed number of in flight
// swaps, we do not suggest any more at the moment.
allowedSwaps := m.params.MaxAutoInFlight - summary.inFlightCount
if allowedSwaps <= 0 {
log.Debugf("%v autoloops allowed, %v in flight",
m.params.MaxAutoInFlight, summary.inFlightCount)
return m.singleReasonSuggestion(ReasonInFlight), nil
}
channels, err := m.cfg.Lnd.Client.ListChannels(ctx, false, false)
if err != nil {
return nil, err
}
// Collect a map of channel IDs to peer pubkeys, and a set of per-peer
// balances which we will use for peer-level liquidity rules.
channelPeers := make(map[uint64]route.Vertex)
peerChannels := make(map[route.Vertex]*balances)
for _, channel := range channels {
channelPeers[channel.ChannelID] = channel.PubKeyBytes
bal, ok := peerChannels[channel.PubKeyBytes]
if !ok {
bal = &balances{}
}
chanID := lnwire.NewShortChanIDFromInt(channel.ChannelID)
bal.channels = append(bal.channels, chanID)
bal.capacity += channel.Capacity
bal.incoming += channel.RemoteBalance
bal.outgoing += channel.LocalBalance
bal.pubkey = channel.PubKeyBytes
peerChannels[channel.PubKeyBytes] = bal
}
// Get a summary of the channels and peers that are not eligible due
// to ongoing swaps.
traffic := m.currentSwapTraffic(loopOut, loopIn)
var (
suggestions []swapSuggestion
resp = newSuggestions()
)
for peer, balances := range peerChannels {
rule, haveRule := m.params.PeerRules[peer]
if !haveRule {
continue
}
suggestion, err := m.suggestSwap(
ctx, traffic, balances, rule, outRestrictions,
autoloop,
)
var reasonErr *reasonError
if errors.As(err, &reasonErr) {
resp.DisqualifiedPeers[peer] = reasonErr.reason
continue
}
if err != nil {
return nil, err
}
suggestions = append(suggestions, suggestion)
}
for _, channel := range channels {
balance := newBalances(channel)
channelID := lnwire.NewShortChanIDFromInt(channel.ChannelID)
rule, ok := m.params.ChannelRules[channelID]
if !ok {
continue
}
suggestion, err := m.suggestSwap(
ctx, traffic, balance, rule, outRestrictions,
autoloop,
)
var reasonErr *reasonError
if errors.As(err, &reasonErr) {
resp.DisqualifiedChans[channelID] = reasonErr.reason
continue
}
if err != nil {
return nil, err
}
suggestions = append(suggestions, suggestion)
}
// If we have no swaps to execute after we have applied all of our
// limits, just return our set of disqualified swaps.
if len(suggestions) == 0 {
return resp, nil
}
// Sort suggestions by amount in descending order.
sort.SliceStable(suggestions, func(i, j int) bool {
return suggestions[i].amount() > suggestions[j].amount()
})
// Run through our suggested swaps in descending order of amount and
// return all of the swaps which will fit within our remaining budget.
available := m.params.AutoFeeBudget - summary.totalFees()
// setReason is a helper that adds a swap's channels to our disqualified
// list with the reason provided.
setReason := func(reason Reason, swap swapSuggestion) {
for _, peer := range swap.peers(channelPeers) {
_, ok := m.params.PeerRules[peer]
if !ok {
continue
}
resp.DisqualifiedPeers[peer] = reason
}
for _, channel := range swap.channels() {
_, ok := m.params.ChannelRules[channel]
if !ok {
continue
}
resp.DisqualifiedChans[channel] = reason
}
}
for _, swap := range suggestions {
swap := swap
// If we do not have enough funds available, or we hit our
// in flight limit, we record this value for the rest of the
// swaps.
var reason Reason
switch {
case available == 0:
reason = ReasonBudgetInsufficient
case len(resp.OutSwaps) == allowedSwaps:
reason = ReasonInFlight
}
if reason != ReasonNone {
setReason(reason, swap)
continue
}
fees := swap.fees()
// If the maximum fee we expect our swap to use is less than the
// amount we have available, we add it to our set of swaps that
// fall within the budget and decrement our available amount.
if fees <= available {
available -= fees
if err := resp.addSwap(swap); err != nil {
return nil, err
}
} else {
setReason(ReasonBudgetInsufficient, swap)
}
}
return resp, nil
}
// suggestSwap checks whether we can currently perform a swap, and creates a
// swap request for the rule provided.
func (m *Manager) suggestSwap(ctx context.Context, traffic *swapTraffic,
balance *balances, rule *SwapRule, outRestrictions *Restrictions,
autoloop bool) (swapSuggestion, error) {
var (
builder swapBuilder
restrictions *Restrictions
)
switch rule.Type {
case swap.TypeOut:
builder = newLoopOutBuilder(m.cfg)
restrictions = outRestrictions
default:
return nil, fmt.Errorf("unsupported swap type: %v", rule.Type)
}
// Before we get any swap suggestions, we check what the current fee
// estimate is to sweep within our target number of confirmations. If
// This fee exceeds the fee limit we have set, we will not suggest any
// swaps at present.
if err := builder.maySwap(ctx, m.params); err != nil {
return nil, err
}
// First, check whether this peer/channel combination is already in use
// for our swap.
err := builder.inUse(traffic, balance.pubkey, balance.channels)
if err != nil {
return nil, err
}
// Next, get the amount that we need to swap for this entity, skipping
// over it if no change in liquidity is required.
amount := rule.swapAmount(balance, restrictions)
if amount == 0 {
return nil, newReasonError(ReasonLiquidityOk)
}
return builder.buildSwap(
ctx, balance.pubkey, balance.channels, amount, autoloop,
m.params,
)
}
// getSwapRestrictions queries the server for its latest swap size restrictions,
// validates client restrictions (if present) against these values and merges
// the client's custom requirements with the server's limits to produce a single
// set of limitations for our swap.
func (m *Manager) getSwapRestrictions(ctx context.Context, swapType swap.Type) (
*Restrictions, error) {
restrictions, err := m.cfg.Restrictions(ctx, swapType)
if err != nil {
return nil, err
}
// It is possible that the server has updated its restrictions since
// we validated our client restrictions, so we validate again to ensure
// that our restrictions are within the server's bounds.
err = validateRestrictions(restrictions, &m.params.ClientRestrictions)
if err != nil {
return nil, err
}
// If our minimum is more than the server's minimum, we set it.
if m.params.ClientRestrictions.Minimum > restrictions.Minimum {
restrictions.Minimum = m.params.ClientRestrictions.Minimum
}
// If our maximum set and is less than the server's maximum, we set it.
if m.params.ClientRestrictions.Maximum != 0 &&
m.params.ClientRestrictions.Maximum < restrictions.Maximum {
restrictions.Maximum = m.params.ClientRestrictions.Maximum
}
return restrictions, nil
}
// worstCaseOutFees calculates the largest possible fees for a loop out swap,
// comparing the fees for a successful swap to the cost when the client pays
// the prepay because they failed to sweep the on chain htlc. This is unlikely,
// because we expect clients to be online to sweep, but we want to account for
// every outcome so we include it.
func worstCaseOutFees(prepayRouting, swapRouting, swapFee, minerFee,
prepayAmount btcutil.Amount) btcutil.Amount {
var (
successFees = prepayRouting + minerFee + swapFee + swapRouting
noShowFees = prepayRouting + prepayAmount
)
if noShowFees > successFees {
return noShowFees
}
return successFees
}
// existingAutoLoopSummary provides a summary of the existing autoloops which
// were dispatched during our current budget period.
type existingAutoLoopSummary struct {
// spentFees is the amount we have spent on completed swaps.
spentFees btcutil.Amount
// pendingFees is the worst-case amount of fees we could spend on in
// flight autoloops.
pendingFees btcutil.Amount
// inFlightCount is the total number of automated swaps that are
// currently in flight. Note that this may race with swap completion,
// but not with initiation of new automated swaps, this is ok, because
// it can only lead to dispatching fewer swaps than we could have (not
// too many).
inFlightCount int
}
// totalFees returns the total amount of fees that automatically dispatched
// swaps may consume.
func (e *existingAutoLoopSummary) totalFees() btcutil.Amount {
return e.spentFees + e.pendingFees
}
// checkExistingAutoLoops calculates the total amount that has been spent by
// automatically dispatched swaps that have completed, and the worst-case fee
// total for our set of ongoing, automatically dispatched swaps as well as a
// current in-flight count.
func (m *Manager) checkExistingAutoLoops(ctx context.Context,
loopOuts []*loopdb.LoopOut, loopIns []*loopdb.LoopIn) (
*existingAutoLoopSummary, error) {
var summary existingAutoLoopSummary
for _, out := range loopOuts {
if out.Contract.Label != labels.AutoloopLabel(swap.TypeOut) {
continue
}
// If we have a pending swap, we are uncertain of the fees that
// it will end up paying. We use the worst-case estimate based
// on the maximum values we set for each fee category. This will
// likely over-estimate our fees (because we probably won't
// spend our maximum miner amount). If a swap is not pending,
// it has succeeded or failed so we just record our actual fees
// for the swap provided that the swap completed after our
// budget start date.
if out.State().State.Type() == loopdb.StateTypePending {
summary.inFlightCount++
prepay, err := m.cfg.Lnd.Client.DecodePaymentRequest(
ctx, out.Contract.PrepayInvoice,
)
if err != nil {
return nil, err
}
summary.pendingFees += worstCaseOutFees(
out.Contract.MaxPrepayRoutingFee,
out.Contract.MaxSwapRoutingFee,
out.Contract.MaxSwapFee,
out.Contract.MaxMinerFee,
mSatToSatoshis(prepay.Value),
)
} else if !out.LastUpdateTime().Before(m.params.AutoFeeStartDate) {
summary.spentFees += out.State().Cost.Total()
}
}
for _, in := range loopIns {
if in.Contract.Label != labels.AutoloopLabel(swap.TypeIn) {
continue
}
pending := in.State().State.Type() == loopdb.StateTypePending
inBudget := !in.LastUpdateTime().Before(m.params.AutoFeeStartDate)
// If an autoloop is in a pending state, we always count it in
// our current budget, and record the worst-case fees for it,
// because we do not know how it will resolve.
if pending {
summary.inFlightCount++
summary.pendingFees += worstCaseInFees(
in.Contract.MaxMinerFee, in.Contract.MaxSwapFee,
defaultLoopInSweepFee,
)
} else if inBudget {
summary.spentFees += in.State().Cost.Total()
}
}
return &summary, nil
}
// currentSwapTraffic examines our existing swaps and returns a summary of the
// current activity which can be used to determine whether we should perform
// any swaps.
func (m *Manager) currentSwapTraffic(loopOut []*loopdb.LoopOut,
loopIn []*loopdb.LoopIn) *swapTraffic {
traffic := newSwapTraffic()
// Failure cutoff is the most recent failure timestamp we will still
// consider a channel eligible. Any channels involved in swaps that have
// failed since this point will not be considered.
failureCutoff := m.cfg.Clock.Now().Add(m.params.FailureBackOff * -1)
for _, out := range loopOut {
var (
state = out.State().State
chanSet = out.Contract.OutgoingChanSet
)
// If a loop out swap failed due to off chain payment after our
// failure cutoff, we add all of its channels to a set of
// recently failed channels. It is possible that not all of
// these channels were used for the swap, but we play it safe
// and back off for all of them.
//
// We only backoff for off temporary failures. In the case of
// chain payment failures, our swap failed to route and we do
// not want to repeatedly try to route through bad channels
// which remain unbalanced because they cannot route a swap, so
// we backoff.
if state == loopdb.StateFailOffchainPayments {
failedAt := out.LastUpdate().Time
if failedAt.After(failureCutoff) {
for _, id := range chanSet {
chanID := lnwire.NewShortChanIDFromInt(
id,
)
traffic.failedLoopOut[chanID] = failedAt
}
}
}
// Skip completed swaps, they can't affect our channel balances.
// Swaps that fail temporarily are considered to be in a pending
// state, so we will also check that channels being used by
// these swaps. This is important, because a temporarily failed
// swap could be re-dispatched on restart, affecting our
// balances.
if state.Type() != loopdb.StateTypePending {
continue
}
for _, id := range chanSet {
chanID := lnwire.NewShortChanIDFromInt(id)
traffic.ongoingLoopOut[chanID] = true
}
}
for _, in := range loopIn {
// Skip over swaps that may come through any peer.
if in.Contract.LastHop == nil {
continue
}
pubkey := *in.Contract.LastHop
switch {
// Include any pending swaps in our ongoing set of swaps.
case in.State().State.Type() == loopdb.StateTypePending:
traffic.ongoingLoopIn[pubkey] = true
// If a swap failed with an on-chain timeout, the server could
// not route to us. We add it to our backoff list so that
// there's some time for routing conditions to improve.
case in.State().State == loopdb.StateFailTimeout:
failedAt := in.LastUpdate().Time
if failedAt.After(failureCutoff) {
traffic.failedLoopIn[pubkey] = failedAt
}
}
}
return traffic
}
// swapTraffic contains a summary of our current and previously failed swaps.
type swapTraffic struct {
ongoingLoopOut map[lnwire.ShortChannelID]bool
ongoingLoopIn map[route.Vertex]bool
failedLoopOut map[lnwire.ShortChannelID]time.Time
failedLoopIn map[route.Vertex]time.Time
}
func newSwapTraffic() *swapTraffic {
return &swapTraffic{
ongoingLoopOut: make(map[lnwire.ShortChannelID]bool),
ongoingLoopIn: make(map[route.Vertex]bool),
failedLoopOut: make(map[lnwire.ShortChannelID]time.Time),
failedLoopIn: make(map[route.Vertex]time.Time),
}
}
// satPerKwToSatPerVByte converts sat per kWeight to sat per vByte.
func satPerKwToSatPerVByte(satPerKw chainfee.SatPerKWeight) int64 {
return int64(satPerKw.FeePerKVByte() / 1000)
}
// ppmToSat takes an amount and a measure of parts per million for the amount
// and returns the amount that the ppm represents.
func ppmToSat(amount btcutil.Amount, ppm uint64) btcutil.Amount {
return btcutil.Amount(uint64(amount) * ppm / FeeBase)
}
func mSatToSatoshis(amount lnwire.MilliSatoshi) btcutil.Amount {
return btcutil.Amount(amount / 1000)
}