2
0
mirror of https://github.com/lightninglabs/loop synced 2024-11-04 06:00:21 +00:00
loop/loopin.go
Joost Jager 2e48ead6d6
loopd: loop in from external address
Allow user to specify that htlc will be published by an external source.
In that case no internal htlc tx will be published.

To facilitate sending to the htlc address, the swap initiation response
is extended with that address.
2019-04-02 00:02:04 +02:00

598 lines
16 KiB
Go

package loop
import (
"context"
"crypto/rand"
"crypto/sha256"
"fmt"
"time"
"github.com/lightninglabs/loop/swap"
"github.com/btcsuite/btcutil"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/lnrpc/invoicesrpc"
"github.com/lightninglabs/loop/lndclient"
"github.com/lightninglabs/loop/loopdb"
"github.com/lightningnetwork/lnd/lntypes"
)
var (
// MaxLoopInAcceptDelta configures the maximum acceptable number of
// remaining blocks until the on-chain htlc expires. This value is used
// to decide whether we want to continue with the swap parameters as
// proposed by the server. It is a protection to prevent the server from
// getting us to lock up our funds to an arbitrary point in the future.
MaxLoopInAcceptDelta = int32(1500)
// MinLoopInPublishDelta defines the minimum number of remaining blocks
// until on-chain htlc expiry required to proceed to publishing the htlc
// tx. This value isn't critical, as we could even safely publish the
// htlc after expiry. The reason we do implement this check is to
// prevent us from publishing an htlc that the server surely wouldn't
// follow up to.
MinLoopInPublishDelta = int32(10)
// TimeoutTxConfTarget defines the confirmation target for the loop in
// timeout tx.
TimeoutTxConfTarget = int32(2)
)
// loopInSwap contains all the in-memory state related to a pending loop in
// swap.
type loopInSwap struct {
swapKit
loopdb.LoopInContract
timeoutAddr btcutil.Address
}
// newLoopInSwap initiates a new loop in swap.
func newLoopInSwap(globalCtx context.Context, cfg *swapConfig,
currentHeight int32, request *LoopInRequest) (*loopInSwap, error) {
// Request current server loop in terms and use these to calculate the
// swap fee that we should subtract from the swap amount in the payment
// request that we send to the server.
quote, err := cfg.server.GetLoopInTerms(globalCtx)
if err != nil {
return nil, fmt.Errorf("loop in terms: %v", err)
}
swapFee := swap.CalcFee(
request.Amount, quote.SwapFeeBase, quote.SwapFeeRate,
)
if swapFee > request.MaxSwapFee {
logger.Warnf("Swap fee %v exceeding maximum of %v",
swapFee, request.MaxSwapFee)
return nil, ErrSwapFeeTooHigh
}
// Calculate the swap invoice amount. The prepay is added which
// effectively forces the server to pay us back our prepayment on a
// successful swap.
swapInvoiceAmt := request.Amount - swapFee
// Generate random preimage.
var swapPreimage lntypes.Preimage
if _, err := rand.Read(swapPreimage[:]); err != nil {
logger.Error("Cannot generate preimage")
}
swapHash := lntypes.Hash(sha256.Sum256(swapPreimage[:]))
// Derive a sender key for this swap.
keyDesc, err := cfg.lnd.WalletKit.DeriveNextKey(
globalCtx, swap.KeyFamily,
)
if err != nil {
return nil, err
}
var senderKey [33]byte
copy(senderKey[:], keyDesc.PubKey.SerializeCompressed())
// Create the swap invoice in lnd.
_, swapInvoice, err := cfg.lnd.Client.AddInvoice(
globalCtx, &invoicesrpc.AddInvoiceData{
Preimage: &swapPreimage,
Value: swapInvoiceAmt,
Memo: "swap",
Expiry: 3600 * 24 * 365,
},
)
if err != nil {
return nil, err
}
// Post the swap parameters to the swap server. The response contains
// the server success key and the expiry height of the on-chain swap
// htlc.
logger.Infof("Initiating swap request at height %v", currentHeight)
swapResp, err := cfg.server.NewLoopInSwap(globalCtx, swapHash,
request.Amount, senderKey, swapInvoice,
)
if err != nil {
return nil, fmt.Errorf("cannot initiate swap: %v", err)
}
// Validate the response parameters the prevent us continuing with a
// swap that is based on parameters outside our allowed range.
err = validateLoopInContract(cfg.lnd, currentHeight, request, swapResp)
if err != nil {
return nil, err
}
// Instantiate a struct that contains all required data to start the
// swap.
initiationTime := time.Now()
contract := loopdb.LoopInContract{
HtlcConfTarget: request.HtlcConfTarget,
LoopInChannel: request.LoopInChannel,
ExternalHtlc: request.ExternalHtlc,
SwapContract: loopdb.SwapContract{
InitiationHeight: currentHeight,
InitiationTime: initiationTime,
ReceiverKey: swapResp.receiverKey,
SenderKey: senderKey,
Preimage: swapPreimage,
AmountRequested: request.Amount,
CltvExpiry: swapResp.expiry,
MaxMinerFee: request.MaxMinerFee,
MaxSwapFee: request.MaxSwapFee,
},
}
swapKit, err := newSwapKit(
swapHash, TypeIn, cfg, &contract.SwapContract,
)
if err != nil {
return nil, err
}
swapKit.lastUpdateTime = initiationTime
swap := &loopInSwap{
LoopInContract: contract,
swapKit: *swapKit,
}
// Persist the data before exiting this function, so that the caller can
// trust that this swap will be resumed on restart.
err = cfg.store.CreateLoopIn(swapHash, &swap.LoopInContract)
if err != nil {
return nil, fmt.Errorf("cannot store swap: %v", err)
}
return swap, nil
}
// resumeLoopInSwap returns a swap object representing a pending swap that has
// been restored from the database.
func resumeLoopInSwap(reqContext context.Context, cfg *swapConfig,
pend *loopdb.LoopIn) (*loopInSwap, error) {
hash := lntypes.Hash(sha256.Sum256(pend.Contract.Preimage[:]))
logger.Infof("Resuming loop in swap %v", hash)
swapKit, err := newSwapKit(
hash, TypeIn, cfg, &pend.Contract.SwapContract,
)
if err != nil {
return nil, err
}
swap := &loopInSwap{
LoopInContract: *pend.Contract,
swapKit: *swapKit,
}
lastUpdate := pend.LastUpdate()
if lastUpdate == nil {
swap.lastUpdateTime = pend.Contract.InitiationTime
} else {
swap.state = lastUpdate.State
swap.lastUpdateTime = lastUpdate.Time
}
return swap, nil
}
// validateLoopInContract validates the contract parameters against our
// request.
func validateLoopInContract(lnd *lndclient.LndServices,
height int32,
request *LoopInRequest,
response *newLoopInResponse) error {
// Verify that we are not forced to publish an htlc that locks up our
// funds for too long in case the server doesn't follow through.
if response.expiry-height > MaxLoopInAcceptDelta {
return ErrExpiryTooFar
}
return nil
}
// execute starts/resumes the swap. It is a thin wrapper around executeSwap to
// conveniently handle the error case.
func (s *loopInSwap) execute(mainCtx context.Context,
cfg *executeConfig, height int32) error {
s.executeConfig = *cfg
s.height = height
// Announce swap by sending out an initial update.
err := s.sendUpdate(mainCtx)
if err != nil {
return err
}
// Execute the swap until it either reaches a final state or a temporary
// error occurs.
err = s.executeSwap(mainCtx)
// Sanity check. If there is no error, the swap must be in a final
// state.
if err == nil && s.state.Type() == loopdb.StateTypePending {
err = fmt.Errorf("swap in non-final state %v", s.state)
}
// If an unexpected error happened, report a temporary failure
// but don't persist the error. Otherwise for example a
// connection error could lead to abandoning the swap
// permanently and losing funds.
if err != nil {
s.log.Errorf("Swap error: %v", err)
s.state = loopdb.StateFailTemporary
// If we cannot send out this update, there is nothing we can do.
_ = s.sendUpdate(mainCtx)
return err
}
s.log.Infof("Loop in swap completed: %v "+
"(final cost: server %v, onchain %v)",
s.state,
s.cost.Server,
s.cost.Onchain,
)
return nil
}
// executeSwap executes the swap.
func (s *loopInSwap) executeSwap(globalCtx context.Context) error {
var err error
// For loop in, the client takes the first step by publishing the
// on-chain htlc. Only do this is we haven't already done so in a
// previous run.
if s.state == loopdb.StateInitiated {
if s.ExternalHtlc {
// If an external htlc was indicated, we can move to the
// HtlcPublished state directly and wait for
// confirmation.
s.state = loopdb.StateHtlcPublished
err = s.persistState(globalCtx)
if err != nil {
return err
}
} else {
published, err := s.publishOnChainHtlc(globalCtx)
if err != nil {
return err
}
if !published {
return nil
}
}
}
// Wait for the htlc to confirm. After a restart this will pick up a
// previously published tx.
conf, err := s.waitForHtlcConf(globalCtx)
if err != nil {
return err
}
// Determine the htlc outpoint by inspecting the htlc tx.
htlcOutpoint, htlcValue, err := swap.GetScriptOutput(
conf.Tx, s.htlc.ScriptHash,
)
if err != nil {
return err
}
// TODO: Add miner fee of htlc tx to swap cost balance.
// The server is expected to see the htlc on-chain and knowing that it
// can sweep that htlc with the preimage, it should pay our swap
// invoice, receive the preimage and sweep the htlc. We are waiting for
// this to happen and simultaneously watch the htlc expiry height. When
// the htlc expires, we will publish a timeout tx to reclaim the funds.
spend, err := s.waitForHtlcSpend(globalCtx, htlcOutpoint)
if err != nil {
return err
}
// Determine the htlc input of the spending tx and inspect the witness
// to findout whether a success or a timeout tx spend the htlc.
htlcInput := spend.SpendingTx.TxIn[spend.SpenderInputIndex]
if s.htlc.IsSuccessWitness(htlcInput.Witness) {
s.state = loopdb.StateSuccess
// Server swept the htlc. The htlc value can be added to the
// server cost balance.
s.cost.Server += htlcValue
} else {
s.state = loopdb.StateFailTimeout
// Now that the timeout tx confirmed, we can safely cancel the
// swap invoice. We still need to query the final invoice state.
// This is not a hodl invoice, so it may be that the invoice was
// already settled. This means that the server didn't succeed in
// sweeping the htlc after paying the invoice.
err := s.lnd.Invoices.CancelInvoice(globalCtx, s.hash)
if err != nil && err != channeldb.ErrInvoiceAlreadySettled {
return err
}
// TODO: Add miner fee of timeout tx to swap cost balance.
}
// Wait for a final state of the swap invoice. It should either be
// settled because the server successfully paid it or canceled because
// we canceled after our timeout tx confirmed.
err = s.waitForSwapInvoiceResult(globalCtx)
if err != nil {
return err
}
// Persist swap outcome.
if err := s.persistState(globalCtx); err != nil {
return err
}
return nil
}
// waitForHtlcConf watches the chain until the htlc confirms.
func (s *loopInSwap) waitForHtlcConf(globalCtx context.Context) (
*chainntnfs.TxConfirmation, error) {
ctx, cancel := context.WithCancel(globalCtx)
defer cancel()
confChan, confErr, err := s.lnd.ChainNotifier.RegisterConfirmationsNtfn(
ctx, nil, s.htlc.ScriptHash, 1, s.InitiationHeight,
)
if err != nil {
return nil, err
}
for {
select {
// Htlc confirmed.
case conf := <-confChan:
return conf, nil
// Conf ntfn error.
case err := <-confErr:
return nil, err
// Keep up with block height.
case notification := <-s.blockEpochChan:
s.height = notification.(int32)
// Cancel.
case <-globalCtx.Done():
return nil, globalCtx.Err()
}
}
}
// publishOnChainHtlc checks whether there are still enough blocks left and if
// so, it publishes the htlc and advances the swap state.
func (s *loopInSwap) publishOnChainHtlc(ctx context.Context) (bool, error) {
var err error
blocksRemaining := s.CltvExpiry - s.height
s.log.Infof("Blocks left until on-chain expiry: %v", blocksRemaining)
// Verify whether it still makes sense to publish the htlc.
if blocksRemaining < MinLoopInPublishDelta {
s.state = loopdb.StateFailTimeout
return false, s.persistState(ctx)
}
// Get fee estimate from lnd.
feeRate, err := s.lnd.WalletKit.EstimateFee(
ctx, s.LoopInContract.HtlcConfTarget,
)
if err != nil {
return false, fmt.Errorf("estimate fee: %v", err)
}
// Transition to state HtlcPublished before calling SendOutputs to
// prevent us from ever paying multiple times after a crash.
s.state = loopdb.StateHtlcPublished
err = s.persistState(ctx)
if err != nil {
return false, err
}
s.log.Infof("Publishing on chain HTLC with fee rate %v", feeRate)
tx, err := s.lnd.WalletKit.SendOutputs(ctx,
[]*wire.TxOut{{
PkScript: s.htlc.ScriptHash,
Value: int64(s.LoopInContract.AmountRequested),
}},
feeRate,
)
if err != nil {
return false, fmt.Errorf("send outputs: %v", err)
}
s.log.Infof("Published on chain HTLC tx %v", tx.TxHash())
return true, nil
}
// waitForHtlcSpend waits until a spending tx of the htlc gets confirmed and
// returns the spend details.
func (s *loopInSwap) waitForHtlcSpend(ctx context.Context,
htlc *wire.OutPoint) (*chainntnfs.SpendDetail, error) {
// Register the htlc spend notification.
rpcCtx, cancel := context.WithCancel(ctx)
defer cancel()
spendChan, spendErr, err := s.lnd.ChainNotifier.RegisterSpendNtfn(
rpcCtx, nil, s.htlc.ScriptHash, s.InitiationHeight,
)
if err != nil {
return nil, fmt.Errorf("register spend ntfn: %v", err)
}
for {
select {
// Spend notification error.
case err := <-spendErr:
return nil, err
case notification := <-s.blockEpochChan:
s.height = notification.(int32)
if s.height >= s.LoopInContract.CltvExpiry {
err := s.publishTimeoutTx(ctx, htlc)
if err != nil {
return nil, err
}
}
// Htlc spend, break loop.
case spendDetails := <-spendChan:
s.log.Infof("Htlc spend by tx: %v",
spendDetails.SpenderTxHash)
return spendDetails, nil
case <-ctx.Done():
return nil, ctx.Err()
}
}
}
// waitForSwapPaid waits until our swap invoice gets paid by the server.
func (s *loopInSwap) waitForSwapInvoiceResult(ctx context.Context) error {
// Wait for swap invoice to be paid.
rpcCtx, cancel := context.WithCancel(ctx)
defer cancel()
s.log.Infof("Subscribing to swap invoice %v", s.hash)
swapInvoiceChan, swapInvoiceErr, err := s.lnd.Invoices.SubscribeSingleInvoice(
rpcCtx, s.hash,
)
if err != nil {
return err
}
for {
select {
// Swap invoice ntfn error.
case err := <-swapInvoiceErr:
return err
case update := <-swapInvoiceChan:
s.log.Infof("Received swap invoice update: %v",
update.State)
switch update.State {
// Swap invoice was paid, so update server cost balance.
case channeldb.ContractSettled:
s.cost.Server -= update.AmtPaid
return nil
// Canceled invoice has no effect on server cost
// balance.
case channeldb.ContractCanceled:
return nil
}
case <-ctx.Done():
return ctx.Err()
}
}
}
// publishTimeoutTx publishes a timeout tx after the on-chain htlc has expired.
// The swap failed and we are reclaiming our funds.
func (s *loopInSwap) publishTimeoutTx(ctx context.Context,
htlc *wire.OutPoint) error {
if s.timeoutAddr == nil {
var err error
s.timeoutAddr, err = s.lnd.WalletKit.NextAddr(ctx)
if err != nil {
return err
}
}
// Calculate sweep tx fee
fee, err := s.sweeper.GetSweepFee(
ctx, s.htlc.MaxTimeoutWitnessSize, TimeoutTxConfTarget,
)
if err != nil {
return err
}
witnessFunc := func(sig []byte) (wire.TxWitness, error) {
return s.htlc.GenTimeoutWitness(sig)
}
timeoutTx, err := s.sweeper.CreateSweepTx(
ctx, s.height, s.htlc, *htlc, s.SenderKey, witnessFunc,
s.LoopInContract.AmountRequested, fee, s.timeoutAddr,
)
if err != nil {
return err
}
timeoutTxHash := timeoutTx.TxHash()
s.log.Infof("Publishing timeout tx %v with fee %v to addr %v",
timeoutTxHash, fee, s.timeoutAddr)
err = s.lnd.WalletKit.PublishTransaction(ctx, timeoutTx)
if err != nil {
s.log.Warnf("publish timeout: %v", err)
}
return nil
}
// persistState updates the swap state and sends out an update notification.
func (s *loopInSwap) persistState(ctx context.Context) error {
updateTime := time.Now()
s.lastUpdateTime = updateTime
// Update state in store.
err := s.store.UpdateLoopIn(s.hash, updateTime, s.state)
if err != nil {
return err
}
// Send out swap update
return s.sendUpdate(ctx)
}