package loop import ( "context" "testing" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcutil" "github.com/lightninglabs/loop/loopdb" "github.com/lightninglabs/loop/swap" "github.com/lightninglabs/loop/test" "github.com/lightningnetwork/lnd/chainntnfs" "github.com/lightningnetwork/lnd/channeldb" "github.com/stretchr/testify/require" ) var ( testLoopInRequest = LoopInRequest{ Amount: btcutil.Amount(50000), MaxSwapFee: btcutil.Amount(1000), HtlcConfTarget: 2, Initiator: "test", } ) // TestLoopInSuccess tests the success scenario where the swap completes the // happy flow. func TestLoopInSuccess(t *testing.T) { defer test.Guard(t)() ctx := newLoopInTestContext(t) height := int32(600) cfg := newSwapConfig(&ctx.lnd.LndServices, ctx.store, ctx.server) initResult, err := newLoopInSwap( context.Background(), cfg, height, &testLoopInRequest, ) if err != nil { t.Fatal(err) } swap := initResult.swap ctx.store.assertLoopInStored() errChan := make(chan error) go func() { err := swap.execute(context.Background(), ctx.cfg, height) if err != nil { log.Error(err) } errChan <- err }() ctx.assertState(loopdb.StateInitiated) ctx.assertState(loopdb.StateHtlcPublished) ctx.store.assertLoopInState(loopdb.StateHtlcPublished) // Expect htlc to be published. htlcTx := <-ctx.lnd.SendOutputsChannel // We expect our cost to use the mock fee rate we set for our conf // target. cost := loopdb.SwapCost{ Onchain: getTxFee(&htlcTx, test.DefaultMockFee.FeePerKVByte()), } // Expect the same state to be written again with the htlc tx hash // and on chain fee. state := ctx.store.assertLoopInState(loopdb.StateHtlcPublished) require.NotNil(t, state.HtlcTxHash) require.Equal(t, cost, state.Cost) // Expect register for htlc conf. <-ctx.lnd.RegisterConfChannel <-ctx.lnd.RegisterConfChannel // Confirm htlc. ctx.lnd.ConfChannel <- &chainntnfs.TxConfirmation{ Tx: &htlcTx, } // Client starts listening for spend of htlc. <-ctx.lnd.RegisterSpendChannel // Client starts listening for swap invoice updates. ctx.assertSubscribeInvoice(ctx.server.swapHash) // Server has already paid invoice before spending the htlc. Signal // settled. ctx.updateInvoiceState(49000, channeldb.ContractSettled) // Swap is expected to move to the state InvoiceSettled ctx.assertState(loopdb.StateInvoiceSettled) ctx.store.assertLoopInState(loopdb.StateInvoiceSettled) // Server spends htlc. successTx := wire.MsgTx{} successTx.AddTxIn(&wire.TxIn{ Witness: [][]byte{{}, {}, {}}, }) ctx.lnd.SpendChannel <- &chainntnfs.SpendDetail{ SpendingTx: &successTx, SpenderInputIndex: 0, } ctx.assertState(loopdb.StateSuccess) ctx.store.assertLoopInState(loopdb.StateSuccess) err = <-errChan if err != nil { t.Fatal(err) } } // TestLoopInTimeout tests scenarios where the server doesn't sweep the htlc // and the client is forced to reclaim the funds using the timeout tx. func TestLoopInTimeout(t *testing.T) { testAmt := int64(testLoopInRequest.Amount) t.Run("internal htlc", func(t *testing.T) { testLoopInTimeout(t, swap.HtlcP2WSH, 0) }) outputTypes := []swap.HtlcOutputType{swap.HtlcP2WSH, swap.HtlcNP2WSH} for _, outputType := range outputTypes { outputType := outputType t.Run(outputType.String(), func(t *testing.T) { t.Run("external htlc", func(t *testing.T) { testLoopInTimeout(t, outputType, testAmt) }) t.Run("external amount too high", func(t *testing.T) { testLoopInTimeout(t, outputType, testAmt+1) }) t.Run("external amount too low", func(t *testing.T) { testLoopInTimeout(t, outputType, testAmt-1) }) }) } } func testLoopInTimeout(t *testing.T, outputType swap.HtlcOutputType, externalValue int64) { defer test.Guard(t)() ctx := newLoopInTestContext(t) height := int32(600) cfg := newSwapConfig(&ctx.lnd.LndServices, ctx.store, ctx.server) req := testLoopInRequest if externalValue != 0 { req.ExternalHtlc = true } initResult, err := newLoopInSwap( context.Background(), cfg, height, &req, ) if err != nil { t.Fatal(err) } s := initResult.swap ctx.store.assertLoopInStored() errChan := make(chan error) go func() { err := s.execute(context.Background(), ctx.cfg, height) if err != nil { log.Error(err) } errChan <- err }() ctx.assertState(loopdb.StateInitiated) ctx.assertState(loopdb.StateHtlcPublished) ctx.store.assertLoopInState(loopdb.StateHtlcPublished) var ( htlcTx wire.MsgTx cost loopdb.SwapCost ) if externalValue == 0 { // Expect htlc to be published. htlcTx = <-ctx.lnd.SendOutputsChannel cost = loopdb.SwapCost{ Onchain: getTxFee( &htlcTx, test.DefaultMockFee.FeePerKVByte(), ), } // Expect the same state to be written again with the htlc tx // hash and cost. state := ctx.store.assertLoopInState(loopdb.StateHtlcPublished) require.NotNil(t, state.HtlcTxHash) require.Equal(t, cost, state.Cost) } else { // Create an external htlc publish tx. var pkScript []byte if outputType == swap.HtlcNP2WSH { pkScript = s.htlcNP2WSH.PkScript } else { pkScript = s.htlcP2WSH.PkScript } htlcTx = wire.MsgTx{ TxOut: []*wire.TxOut{ { PkScript: pkScript, Value: externalValue, }, }, } } // Expect register for htlc conf. <-ctx.lnd.RegisterConfChannel <-ctx.lnd.RegisterConfChannel // Confirm htlc. ctx.lnd.ConfChannel <- &chainntnfs.TxConfirmation{ Tx: &htlcTx, } // Assert that the swap is failed in case of an invalid amount. invalidAmt := externalValue != 0 && externalValue != int64(req.Amount) if invalidAmt { ctx.assertState(loopdb.StateFailIncorrectHtlcAmt) ctx.store.assertLoopInState(loopdb.StateFailIncorrectHtlcAmt) err = <-errChan if err != nil { t.Fatal(err) } return } // Client starts listening for spend of htlc. <-ctx.lnd.RegisterSpendChannel // Client starts listening for swap invoice updates. ctx.assertSubscribeInvoice(ctx.server.swapHash) // Let htlc expire. ctx.blockEpochChan <- s.LoopInContract.CltvExpiry // Expect a signing request for the htlc tx output value. signReq := <-ctx.lnd.SignOutputRawChannel if signReq.SignDescriptors[0].Output.Value != htlcTx.TxOut[0].Value { t.Fatal("invalid signing amount") } // Expect timeout tx to be published. timeoutTx := <-ctx.lnd.TxPublishChannel // We can just get our sweep fee as we would in the swap code because // our estimate is static. fee, err := s.sweeper.GetSweepFee( context.Background(), s.htlc.AddTimeoutToEstimator, s.timeoutAddr, TimeoutTxConfTarget, ) require.NoError(t, err) cost.Onchain += fee // Confirm timeout tx. ctx.lnd.SpendChannel <- &chainntnfs.SpendDetail{ SpendingTx: timeoutTx, SpenderInputIndex: 0, } // Now that timeout tx has confirmed, the client should be able to // safely cancel the swap invoice. <-ctx.lnd.FailInvoiceChannel // Signal that the invoice was canceled. ctx.updateInvoiceState(0, channeldb.ContractCanceled) ctx.assertState(loopdb.StateFailTimeout) state := ctx.store.assertLoopInState(loopdb.StateFailTimeout) require.Equal(t, cost, state.Cost) err = <-errChan if err != nil { t.Fatal(err) } } // TestLoopInResume tests resuming swaps in various states. func TestLoopInResume(t *testing.T) { storedVersion := []loopdb.ProtocolVersion{ loopdb.ProtocolVersionUnrecorded, loopdb.ProtocolVersionHtlcV2, } htlcVersion := []swap.ScriptVersion{ swap.HtlcV1, swap.HtlcV2, } for i, version := range storedVersion { version := version scriptVersion := htlcVersion[i] t.Run(version.String(), func(t *testing.T) { t.Run("initiated", func(t *testing.T) { testLoopInResume( t, loopdb.StateInitiated, false, version, scriptVersion, ) }) t.Run("initiated expired", func(t *testing.T) { testLoopInResume( t, loopdb.StateInitiated, true, version, scriptVersion, ) }) t.Run("htlc published", func(t *testing.T) { testLoopInResume( t, loopdb.StateHtlcPublished, false, version, scriptVersion, ) }) }) } } func testLoopInResume(t *testing.T, state loopdb.SwapState, expired bool, storedVersion loopdb.ProtocolVersion, scriptVersion swap.ScriptVersion) { defer test.Guard(t)() ctx := newLoopInTestContext(t) cfg := newSwapConfig(&ctx.lnd.LndServices, ctx.store, ctx.server) senderKey := [33]byte{4} receiverKey := [33]byte{5} contract := &loopdb.LoopInContract{ HtlcConfTarget: 2, SwapContract: loopdb.SwapContract{ Preimage: testPreimage, AmountRequested: 100000, CltvExpiry: 744, ReceiverKey: receiverKey, SenderKey: senderKey, MaxSwapFee: 60000, MaxMinerFee: 50000, ProtocolVersion: storedVersion, }, } pendSwap := &loopdb.LoopIn{ Contract: contract, Loop: loopdb.Loop{ Events: []*loopdb.LoopEvent{ { SwapStateData: loopdb.SwapStateData{ State: state, }, }, }, Hash: testPreimage.Hash(), }, } // If we have already published the htlc, we expect our cost to already // be published. var cost loopdb.SwapCost if state == loopdb.StateHtlcPublished { cost = loopdb.SwapCost{ Onchain: 999, } pendSwap.Loop.Events[0].Cost = cost } htlc, err := swap.NewHtlc( scriptVersion, contract.CltvExpiry, contract.SenderKey, contract.ReceiverKey, testPreimage.Hash(), swap.HtlcNP2WSH, cfg.lnd.ChainParams, ) if err != nil { t.Fatal(err) } err = ctx.store.CreateLoopIn(testPreimage.Hash(), contract) if err != nil { t.Fatal(err) } swap, err := resumeLoopInSwap( context.Background(), cfg, pendSwap, ) if err != nil { t.Fatal(err) } var height int32 if expired { height = 740 } else { height = 600 } errChan := make(chan error) go func() { err := swap.execute(context.Background(), ctx.cfg, height) if err != nil { log.Error(err) } errChan <- err }() defer func() { err = <-errChan if err != nil { t.Fatal(err) } select { case <-ctx.lnd.SendPaymentChannel: t.Fatal("unexpected payment sent") default: } select { case <-ctx.lnd.SendOutputsChannel: t.Fatal("unexpected tx published") default: } }() var htlcTx wire.MsgTx if state == loopdb.StateInitiated { ctx.assertState(loopdb.StateInitiated) if expired { ctx.assertState(loopdb.StateFailTimeout) return } ctx.assertState(loopdb.StateHtlcPublished) ctx.store.assertLoopInState(loopdb.StateHtlcPublished) // Expect htlc to be published. htlcTx = <-ctx.lnd.SendOutputsChannel cost = loopdb.SwapCost{ Onchain: getTxFee( &htlcTx, test.DefaultMockFee.FeePerKVByte(), ), } // Expect the same state to be written again with the htlc tx // hash. state := ctx.store.assertLoopInState(loopdb.StateHtlcPublished) require.NotNil(t, state.HtlcTxHash) } else { ctx.assertState(loopdb.StateHtlcPublished) htlcTx.AddTxOut(&wire.TxOut{ PkScript: htlc.PkScript, Value: int64(contract.AmountRequested), }) } // Expect register for htlc conf. <-ctx.lnd.RegisterConfChannel <-ctx.lnd.RegisterConfChannel // Confirm htlc. ctx.lnd.ConfChannel <- &chainntnfs.TxConfirmation{ Tx: &htlcTx, } // Client starts listening for spend of htlc. <-ctx.lnd.RegisterSpendChannel // Client starts listening for swap invoice updates. ctx.assertSubscribeInvoice(testPreimage.Hash()) // Server has already paid invoice before spending the htlc. Signal // settled. amtPaid := btcutil.Amount(49000) ctx.updateInvoiceState(amtPaid, channeldb.ContractSettled) // Swap is expected to move to the state InvoiceSettled ctx.assertState(loopdb.StateInvoiceSettled) ctx.store.assertLoopInState(loopdb.StateInvoiceSettled) // Server spends htlc. successTx := wire.MsgTx{} successTx.AddTxIn(&wire.TxIn{ Witness: [][]byte{{}, {}, {}}, }) successTxHash := successTx.TxHash() ctx.lnd.SpendChannel <- &chainntnfs.SpendDetail{ SpendingTx: &successTx, SpenderTxHash: &successTxHash, SpenderInputIndex: 0, } ctx.assertState(loopdb.StateSuccess) finalState := ctx.store.assertLoopInState(loopdb.StateSuccess) // We expect our server fee to reflect as the difference between htlc // value and invoice amount paid. We use our original on-chain cost, set // earlier in the test, because we expect this value to be unchanged. cost.Server = btcutil.Amount(htlcTx.TxOut[0].Value) - amtPaid require.Equal(t, cost, finalState.Cost) }